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a b s t r a c t

Since December 2019 the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-
2) has produced an outbreak of pulmonary disease which has soon become a global
pandemic, known as COronaVIrus Disease-19 (COVID-19). The new coronavirus shares
about 82% of its genome with the one which produced the 2003 outbreak (SARS CoV-1).
Both coronaviruses also share the same cellular receptor, which is the angiotensin-
converting enzyme 2 (ACE2) one. In spite of these similarities, the new coronavirus
has expanded more widely, more faster and more lethally than the previous one. Many
researchers across the disciplines have used diverse modeling tools to analyze the impact
of this pandemic at global and local scales. This includes a wide range of approaches –
deterministic, data-driven, stochastic, agent-based, and their combinations – to forecast
the progression of the epidemic as well as the effects of non-pharmaceutical interven-
tions to stop or mitigate its impact on the world population. The physical complexities
of modern society need to be captured by these models. This includes the many ways of
social contacts – (multiplex) social contact networks, (multilayers) transport systems,
metapopulations, etc. – that may act as a framework for the virus propagation. But
modeling not only plays a fundamental role in analyzing and forecasting epidemiological
variables, but it also plays an important role in helping to find cures for the disease
and in preventing contagion by means of new vaccines. The necessity for answering
swiftly and effectively the questions: could existing drugs work against SARS CoV-2? and
can new vaccines be developed in time? demands the use of physical modeling of proteins,
protein-inhibitors interactions, virtual screening of drugs against virus targets, predicting
immunogenicity of small peptides, modeling vaccinomics and vaccine design, to mention
just a few. Here, we review these three main areas of modeling research against SARS
CoV-2 and COVID-19: (1) epidemiology; (2) drug repurposing; and (3) vaccine design.
Therefore, we compile the most relevant existing literature about modeling strategies
against the virus to help modelers to navigate this fast-growing literature. We also keep
an eye on future outbreaks, where the modelers can find the most relevant strategies
used in an emergency situation as the current one to help in fighting future pandemics.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

In 2007, Cheng et al. [1] remarked that ‘‘the presence of a large reservoir of SARS-CoV viruses in horseshoe bats, together
with the culture of eating exotic mammals in southern China’’ was ‘‘a time bomb’’. The authors then warned that the
possibility of the re-emergence of SARS and other new viruses from animals or laboratories should alert us about ‘‘the
need to be prepared’’. Twelve years later an epidemic outbreak expanded worldwide from its epicenter in Wuhan, province
of Hubei, continental China, since December 2019. This new epidemic that eventually became a pandemic was named
COVID-19. The Coronavirus Disease 2019 (COVID-19) is a pulmonary disease produced by the Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2). The disease expanded quickly across the world from less than 30 cases at the
end of December 2019 to more than 8,455,738 confirmed cases (according to existing data1) by June 20th, 2020 with the
global evolution illustrated in Fig. 1.1.

The COVID-19 has expanded from its epicenter in the Hubei province to practically the whole world as can be seen
in Fig. 1.2.2 Since March 11th, 2020 it was declared a global pandemic by WHO, which is defined as ‘the worldwide
spread of a new disease’ that can be spread worldwide because of the absence of preexisting immunity against the
new pathogen in humans. By the end of January 2020 there were cases also reported from a number of countries that
include: Taiwan, Thailand, Vietnam, Malaysia, Nepal, Sri Lanka, Cambodia, Japan, Singapore, Republic of Korea, United
Arab Emirates, United States, The Philippines, India, Australia, Canada, Finland, France, and Germany. Five days after the
declaration of the pandemic the disease had expanded to more than 140 countries.

According to the most recent scientific evidence, SARS CoV-2 is transmitted between people through respiratory
droplets and contact routes (see [2]). The mechanism of virus transmission and some data about the virus is provided
here according to data reported by Bar-On et al. [3], Rothan et al. [4], and Vannabouathong et al. [5]. Once the virus enters
a human cell it has a latent period until the infected person becomes infectious himself. The latent period of SARS CoV-2
is approximately 3.69 days, which is then followed by an infectious period of about 3.48 days. When an infected individual
is on the infectious period she can transmit the virus to other people by coughing or sneezing. Cough and sneeze produce
droplets which can travel to another person with a proximity of about 2 m (see Fig. 1.3) who can have her mucosae
or conjunctiva exposed to these droplets containing virion particles. Cough and sneeze produce droplets that travel at
10 m/s and 50 m/s, respectively. These respiratory droplets are formed of large particles (> 5 µm) that fall quickly to
the ground, and small droplets (≤ 5 µm) which can evaporate to form ‘droplet nuclei’. The large droplets may form an
indirect route of transmission by indirect contact with surfaces in the immediate environment where they remain for
periods ranging from 1 to 10 h. The droplet nuclei can remain suspended in air traveling to longer distances, and then
could be inhaled by other individuals. Once entering an individual, the virus can infect several respiratory epithelial cells,
namely type II pneumocytes, alveolar macrophages in the lung (see Fig. 1.3), and mucous glands in nasal cavity. The first
symptoms appear after the incubation period, which has been estimated to be 5.1 days. Accordingly, almost 98% of those

1 https://ourworldindata.org/grapher/total-cases-covid-19?tab=map&year=2020-06-15.
2 https://ourworldindata.org/grapher/total-cases-covid-19?tab=map&year=2020-06-15.

https://ourworldindata.org/grapher/total-cases-covid-19?tab=map&year=2020-06-15
https://ourworldindata.org/grapher/total-cases-covid-19?tab=map&year=2020-06-15
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Fig. 1.1. Evolution of the number of confirmed cases in the world since December 31th 2019 until June 19th 2020. Notice the logarithmic scale on
the y-axis displaying the number of confirmed cases.

Fig. 1.2. Evolution of the COVID-19 pandemic across the world since January 2020 until Jun 2020.

infected individuals who will develop symptoms show them within 11.5 days after infection. These symptoms include
fever, cough, and fatigue, while other symptoms include sputum production, headache, haemoptysis, diarrhea, dyspnoea,
and lymphopenia. The main clinical diagnosis is pneumonia, but also other clinical manifestations include RNAemia, acute
respiratory distress syndrome, acute cardiac injury, as well as incidence of grand-glass opacities that lead to death.



4 E. Estrada / Physics Reports 869 (2020) 1–51

h
m
t
q

Fig. 1.3. Schematic representation of the main transmission route of SARS CoV-2 between individuals (see further for indirect transmission). The
graphic was prepared using Motifolio.

Modeling and simulation have reached a great prominence during COVID-19 pandemic [6]. Kucharski [7] has remarked
ow models can help us not only to understand the past and present of an outbreak, but also to give clues about what
ight happen in the future by simulating many different alternatives. But modeling can not only help in understanding

he epidemic evolution and planning different future scenarios, but it can also help in responding two other important
uestions about this epidemic: ‘‘Could existing drugs work?’’ and ‘‘Can vaccines be developed in time?’’ ([8]). In this review

we focus on the three mentioned aspects more relevant for fighting COVID-19 pandemic: (i) the epidemiology of the
pandemic, (ii) repurposing of known drugs to fight against the virus, and (iii) design of vaccines to protect against the
virus. Therefore, the scope of this review is very broad and ambitious. It is broad because it starts by covering aspects of
mathematical epidemiology, from simple compartmental models to more sophisticated ones, as well as models based
on statistical and data-driven strategies. Then it continues with aspects related to drug repurposing, which include
topics on biophysics, protein structure, drug-inhibitors interactions, and virtual screening of small molecules inhibiting
pharmacological targets [9]. Finally, the review covers aspects related to vaccine design, including topics of vaccinomics
and immunoinformatics, and making emphasis on the design of epitope vaccines. To make this review comprehensive to
a wide audience it includes aspects of the virology of SARS Co-2, its transmission, life cycle, and its entry into human cells,
all based on the most recent findings from structural biology and immunology. The review is written in the middle of the
global pandemic hitting most countries in world, and in a situation in which new information about the epidemiology,
virus biology and development of drugs/vaccines advance in a per day way.

2. Epidemiological analysis

Epidemiological analysis is a well-established area of interdisciplinary research in which medical, statistical, compu-
tational and mathematical elements are integrated to analyze and forecast the progression of a disease. In the words of
Vespignani [10] we should differentiate these studies in ‘peace time’, when there is no health emergency, from those
of ‘war times’, when the emergency of a pandemic is pressing for results with limited data, in a constantly changing
landscape and having to make a lot of assumptions. Tian and Dye (in [10]) have also stressed that in this scenario we
cannot test the effectiveness of control measures in an experiment or a clinical trial, but instead we have to rely on
statistical and mathematical modeling. Therefore, in this section we reviewed some of the most important models and
findings reported in the literature so far for the analysis and forecast of the COVID-19 pandemic. We should remark that as
stressed by Vespignani [10]: ‘‘what has been produced the day before often must be completely revised the day after because
a new piece of information has arrived’’.

2.1. Basic compartment models

The deterministic mathematical models used to analyze the coronavirus rest on the shoulders of a pair of giants: A.G.
McKendrick and W.O. Kermack, the first military doctor and the second chemist. They developed the first compartmental
mathematical model for the study of the evolution of an epidemic [11]. In compartmental models the population is divided
into different compartments, such as Susceptible (S), Infectious (I) and Recovered (R). The differential equations are then
written to analyze the progression of the compartments taking into account the probability that an I–S contact will
produce a new infected person, or the probability that an infected person will recover and go from the compartment
I to the compartment R. These probabilities are usually estimated from the empirical data of an infection and are vital
for simulations of its progression. Here we introduce the basic concepts of these compartment models which will be
necessary for the understanding of more complex models used to forecast the evolution of the COVID-19 pandemic.
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2.1.1. Susceptible–Infected–Recovered (SIR) model
Let β be the infection rate and let I (t) and S (t) be the fractions of infected and susceptible individuals at time t .

Let γ be the rate at which infected individuals recover, and let R (t) be the fractions of recovered individuals. Then the
Susceptible–Infected–Recovered model has the following scheme and scalar equations:

Ṡ (t) = −βS (t) I (t) ,

İ (t) = βS (t) I (t)− γ I (t) ,

Ṙ (t) = γ I (t) .

(2.1)

An important parameter in mathematical epidemiology, which has also been widely studied for COVID-19 (see [12]),
is the basic reproductive number, which is defined below.

The basic reproductive number R0 is the average number of new infections caused by individuals who are infected
shortly after disease introduction in a completely susceptible population. If R0 > 1 the disease can propagate and become
an epidemic, while if R0 < 1, the disease will die out.

The assumption that the whole population is susceptible is very strong, as there could be contacts which are immune.
Therefore, not all contacts of an infectious individual are susceptible to get the virus and we need a new parameter that
takes into account this proportion of the population which is susceptible to a disease. This parameter is defined below.

The effective reproductive number Re (t) is the number of new infections caused by a single infectious individual at time
t in a partially susceptible population. Then,

Re (t) = R0 S (t) . (2.2)

Let us consider that S (0) > 0, I (0) > 0 and S (t) + I (t) + R (t) = 1. If βS (0) /γ > 1 then t ↦→ I (t) increases first
monotonically to a maximum value

Imax = I (0)+ S (0)−
γ

β

(
log (S (0))+ 1 − log

(
γ

β

))
, (2.3)

nd then decreases monotonically to 0 as the time growth to infinity. Then, the basic and effective reproductive numbers
n this model are given by R0 = β/γ and Re (t) = β S (t) /γ , respectively.

It should be remarked here that in real-life examples contact rates and transmissibility typically change over time,
hich is specially true after contention measures are observed. In this case, a better epidemiological parameter to capture
hese realities is the case (also cohort) reproduction number at time step t , Rc

t . It counts the average number of secondary
ransmissions caused by a cohort infected at time step t . As pointed out by Cori et al. [13] Rc

t can be calculated a posteriori,
nce the secondary cases generated by cases infected at t have been infected.
An epidemiological model can also be studied on a network representing the interactions between individuals (contact

etwork), or representing the mobility between regions or patches. In general a network is a weighted graph (see Fig. 2.1
left)) G = (V , E,W , ϕ), where a node i ∈ V represents an individual, institution, geographic region, and so forth, and two
odes i and j form a directed edge (i, j) ∈ E if there is a ‘‘flow’’ from i to j. W =

{
wij ∈ R

}
is a set of weights assigned to

he edges by the function ϕ : (i, j) → wij which may represent a probability of transition, a density of flow between the
odes or the strength of a social tie. A self-loop is an edge (i, i) ∈ E. A graph in which (i, i) /∈ E for all i ∈ V , and for which
(i, j) ∈ E implies that (j, i) ∈ E with wij = wji = 1 is a simple graph or network. A multilayer network (2.1 (right)) is a
raph G = (∪iVi,∪iEi) where the subsets of vertices Vi may represent entities of one class different from those in the set
j, for instance trains and cars [14,15]. Each of these sets of nodes is then represented as a layer of the multilayer graph.
here are intra- and inter-layer edges as illustrated in Fig. 2.1 (right). The adjacency matrix A of a weighted directed graph
s a square matrix whose entries Aij = wij for every pair of (not necessarily different) vertices i, j ∈ V . In case of simple
raph, A is symmetric with Aij = 1 if (i, j) ∈ E and Aij = 0 otherwise.
In a network of interactions the SIR equations are transformed to [16]:

Ṡi (t) = −βSi (t)
n∑

j=1

AijIj (t) ,

İi (t) = βSi (t)
n∑

j=1

AijIj (t)− γ Ii (t) ,

˙

(2.4)
Ri (t) = γ Ii (t) .
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Fig. 2.1. Illustration of a weighted graph (left) and a multilayer graph (right).

In this case the set of equilibrium points is the set of pairs
(
S∗, 0⃗

)
, for any S∗

∈ [0, 1]n. The linearization of the network

SIR model about the equilibrium point
(
S∗, 0⃗

)
is:

Ṡ (t) = −βdiag
(
S∗

)
AI (t) ,

İ (t) = βdiag
(
S∗

)
AI (t)− γ I (t) .

(2.5)

Let G (t) = diag (S (t)) A with eigenvalues λ1 (t) > λ2 (t) ≥ · · · ≥ λn (t) and let ψj (t) be the eigenvector associated
with the jth eigenvalue of G (t). Then, following Mei et al. [16] if we multiply the expression for İ (t) in Eq. (2.5) by ψT

1 (τ )
from the left, we get:

d
dt

(
ψT

1 (τ ) I (t)
)

= ψT
1 (τ ) (βdiag (S (t)) AI (t)− γ I (t))

≤ ψT
1 (τ ) (βdiag (S (τ )) AI (t)− γ I (t))

= (βλ1 (τ )− γ )ψT
1 (τ ) I (t) .

(2.6)

Thus,

ψT
1 (τ ) I (t) ≤

(
ψT

1 (τ ) I (0)
)
e(βλ1(τ )−γ )t . (2.7)

Because the exponential dies out when βλ1 (τ ) < γ we have that ψT
1 (τ ) I (t) monotonically decays to zero for all

> τ , which indicates that when βλ1 (τ ) < γ the epidemic dies out. Now, applying a similar strategy but using ψT
1 (0)

e have
d
dt

(
ψT

1 (0) I (t)
)⏐⏐⏐⏐

t=0
= ψT

1 (0) (βdiag (S (t)) AI (t)− γ I (t))

= (βλ1 (0)− γ )ψT
1 (0) I (t) ,

> 0.

(2.8)

hen, for small t the weighted average t ↦→ ψT
1 (0) I (t) grows exponentially fast with rate βλ1 (0)−γ . Additionally, it can

e proved that there exists τ > 0 such that βλ1 (0) < γ . Therefore, the effective reproductive number for the network
IR model is Re (t) = β λ1 (t) /γ . If we consider that very close to t = 0 all individuals are susceptible, i.e., S (0) = 1⃗
where 1⃗ is the all-ones vector), then R0 = β λ1 (A) /γ , where λ1 (A) is the spectral radius of the adjacency matrix [16].

Although the SIR model is very simple and does not capture all the compartments in which a population is divided
n a realistic COVID-19 situation, it has been used for the prediction of the evolution of this epidemic. In one of these
orks D’Arienzo and Coniglio [17] studied the values of R0 for SARS-CoV-2 using data derived from the early phase of
he outbreak in Italy. They evaluated the basic reproductive number in 9 Italian cities using the SIR model in the interval
etween February 2 and March 12, 2020. Their estimation of R0 for the whole country ranges between 2.43 and 3.10 with
he highest value for the city of Lodi (3.09) followed by Cremona (2.76). Wangping et al. [18] also used SIR to estimate
he basic reproductive number in Italy from January 22th, 2020 to April 2th, 2020, and compare it with that of the city
f Hunan in China. They reported a mean value of 3.10 for R0 in Italy and of 2.48 for Hunan. These values are elevated
o 4.34 and 3.16, respectively by considering an extension of the SIR model (eSIR) which includes the effects of different
ntervention measures in dissimilar periods. According to the eSIR model ‘‘there would be a total of 182,051 infected cases
95%CI:116 114–274,378) under the current country blockade and the endpoint would be Aug 05 in Italy’’. By June 21th
020 the number of COVID confirmed cases in Italy was 238,275, well over those predicted by the eSIR model.
The estimation of R0 was also the goal of You et al. [19] for several cities in China. They also used the SIR model

nd compared it with the prediction made by Poisson likelihood-based method (ML), and the exponential growth rate-
ased method (EGR). They considered data until March 31, 2020. In all cases the values of R0 estimated with SIR were
ignificantly larger than those estimated with ML and EGR for all cities. They also considered the controlled reproduction
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Fig. 2.2. Prediction made by Prasse et al. [23] for the outbreak in Hubei for 4 cities. Reproduced with permission by the authors.

number Rc , which describes the ability of disease spreading when interventions are taking place. Thus it takes into account
he effects of measures such as quarantine, isolation, or traffic control. In all cities analyzed in this paper Rc < R0 by the
three approaches used in the study. In this case, SIR approach does not give the highest values of the estimation like for
the case of R0, but in general it gives values close to those predicted by EGR.

An interesting paper was published by Roda et al. [20] with the suggestive title ‘‘Why is it difficult to accurately predict
the COVID-19 epidemic?’’ The authors compare the predictions made by the simple SIR model with the SEIR one (see next
section) for the COVID-19 in Wuhan city based on the official reports from January 21 to February 4, 2020. They used
the Akaike Information Criterion to compare the standard SIR and SEIR models in predicting the epidemic and concluded
that ‘‘given the same dataset of confirmed cases, more complex models may not necessarily be more reliable in making
predictions due to the larger number of model parameters to be estimated’’. Based on the SIR model Roda et al. [20]
demonstrated the existence of a linkage between the transmission rate and the case-infection ratio, which significantly
affects the predictions of the epidemic made by the model. According to these authors this is the cause for variability in
model predictions and it should not be interpreted ‘‘as a shortcoming of transmission models; neither is it caused by the
limited number of time points in data. Rather, it is caused by the lack of datasets that are independent of the confirmed
cases to allow modelers to produce independent estimates of’’ both parameters mentioned before.

A small variation of the SIR model, known as SIRD, has also been used for the study of COVID-19. In this model the
population is subdivided into the susceptible (S), infected (I), recovered (R), and dead (D) compartments. Fanelli and
Piazza [21] used this model to analyze the temporal dynamics of the COVID-19 outbreak in China, Italy and France in the
time window 22th January to 15th March 2020. According to their predictions the peak in Italy should occurs around
March 21st 2020, with a peak number of infected individuals of about 26,000 (not including recovered and dead) and
a number of deaths at the end of the epidemic of about 18,000. Remarkably, according to WHO data, the peak in Italy
occurred on March 21st. However the number of death in Italy by June 21th is already 34,634. The SIRD model was also
used by Anastassopoulou et al. [22] for the analysis of the epidemic in Hubei, China from January 11 to February 10,
2020. They estimated the case fatality and case recovery ratios, along with their 90% confidence intervals as the outbreak
evolves, as well as the basic reproduction number, and the per day infection mortality and recovery rates.

A network based SIR approach was developed by Prasse et al. [23] to describe the COVID-19 epidemic in the Hubei
province. They considered a network of 16 cities in Hubei. In this case the infection rate β is disaggregated into inter-cities
infection rate βij, which are the infection probability from city j to city i. This gives rise to a weighted adjacency matrix in
which the entries correspond to the values of βij for a given pair of cities. Such probabilities can be obtained from mobility
patterns between cities, but in this case they were inferred from observing the evolution of the epidemic. In Fig. 2.2 we
reproduce the results obtained by Prasse et al. [23] for 4 of the 16 cities studied.

2.1.2. Susceptible–Exposed–Infected–Recovered (SEIR) model
As we have explained in Section 2, SARS CoV-2 has a latent period in which an individual is infected but is not yet

infectious. In compartment models, this period is named Exposed (E) and it is an intermediate period between being
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usceptible (S) and becoming infectious (I). The resulting model is a four compartment one known as SEIR, whose scheme
nd equations for the scalar model are given below:

Ṡ (t) = −βS (t) I (t) ,

Ė (t) = βS (t) I (t)− σE (t) ,

İ (t) = σE (t)− γ I (t)

Ṙ (t) = γ I (t) .

(2.9)

Based on the results of Wallinga and Lipsitch [24], Zhou et al. [25] and Fang et al. [26] have reported the values of the
basic reproductive number using

Re ≈

(
1 +

λ

σ

)(
1 +

λ

γ

)
, (2.10)

where λ = ln Y (t) /t and Y (t) is the number of infected individuals with symptoms at time t . Zhou et al. [25] estimated
R0 to fall between 2.8 and 3.3 by using the real-time reports on the number of COVID-19 infected cases from People’s
Daily in China and fall between 3.2 and 3.9 on the basis of the predicted number of infected cases from international
colleagues. Fang et al. [26] estimated the values of R0 (t) showing values in the range between 2.47 on January 20th to
2.34 on February 29th, with a maximum of 3.20 on January 30th. A simple SEIR model assuming well-mixed population
was used by Hou et al. [27] for exploring the effectiveness of the quarantine of the Wuhan city against this epidemic, on
the transmission dynamics of COVID-19. They show that by reducing the contact rate of latent individuals, interventions
such as quarantine and isolation, can effectively reduce the potential peak number of COVID-19 infections and delay the
time of peak infection.

An important application of SEIR model was developed by Fox et al. [28] who used it to model the number of
hospitalized cases, and Intensive Care Unit (ICU) cases, per 100,000 population. They considered two scenarios, one in
which there was no intervention which displays R0 = 2.4 and a second one with social interventions dropping the basic
reproductive number to R0 = 1.6, both with a start prevalence on 1st March 2020 of 2 persons per million. The authors
compared the results of the SEIR model with those obtained by a model developed by Ferguson et al. [29] on the basis of
a parameterized individual-based simulation model. According to [28] the peak demand for ICU beds was estimated to
be 6965 according to Ferguson et al. [29] model or 5109 ICU beds according to SEIR.

Due to the importance of R0 in all modeling scenarios of COVID-19 we mention here a result reported by Grant [30].
Due to the fact that compartment models do not accurately capture the distribution of times that an individual spends
in each compartment, they do not accurately capture the transient dynamics of epidemic. In the case of SEIR, Grant [30]
shows that the model overestimates epidemic duration by a factor of 2. It also underestimates peak infection rates by a
factor of 3 based on the progress of the epidemic in Wuhan.

In the case in which a network of interactions is taken into account, the system can be expressed in matrix–vector
form as:

⃗̇S (t) = −βdiag
(
S⃗ (t)

)
AI⃗ (t) ,

⃗̇E (t) = βdiag
(
S⃗ (t)

)
AI⃗ (t)− σ E⃗ (t)

⃗̇I (t) = σ E⃗ (t)− γ I⃗ (t) .

(2.11)

The importance of including information about the contact networks to analyze the evolution of (COVID-19) epidemic
was stressed by Small and Cavanagh [31]. According to their results the knowledge of the topology of these contact
networks is more important than the precise knowledge of epidemic transmission parameters. Their model consists of
city-level transmission of an infectious agent with a SEIR dynamic. They then modeled the topological patterns of contact
by varying the structure of the network between different standard topologies, such as: scale-free contact network, a
random graph, regular lattice, and small world networks. Their model exhibits good agreement between simulation and
data from the 2020 pandemic spread of COVID-19 in several Australian cities.

One of the networks that can be used in these analyses is transportation network, such as the network of air traffic
between different airports. This strategy was followed by Linka et al. [32] by using the air transportation network of Europe
in combination with a SEIR model. They correlated the mobility model to passenger air travel statistics and calibrated the
SEIR model using the number of reported COVID-19 cases for each country in Europe. According to their results mobility
networks of air travel can predict the emerging global diffusion pattern of a pandemic at the early stages of the outbreak.
In addition they compared the propagation of the disease with unconstrained mobility and by implementing reduced
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Fig. 2.3. Illustration of the mobility network of the European Union (left), and of the effects of travel restrictions according to Linka et al. [32].
Figures provided by the authors.

Fig. 2.4. Illustration of a multiplex formed by two layers i and j. Notice that the set of vertices is the same in each of the two graphs Gi and Gj ,
but not the sets of edges Ei ̸= Ej .

mobility strategies, clearly showing that unconstrained mobility would accelerate significantly the propagation across
Europe (see Fig. 2.3).

In order to grasp the complexities of the contact networks existing in modern society and necessary for modeling the
propagation of a disease in an effective way it is sometimes needed to use a more complex representation. A condensed
representation of different facets of the same set of entities, e.g., the different contact ways between the same group of
people, can be obtained by means of a multiplex [14,15], which is the triple M = (G,A , S), where G = {G1, . . . ,Gh} is a
set of weighted graphs, in which Gi = (V , Ei) where V = {v1, . . . , vn} is a set of nodes and Ei =

{(
vp (i) , vq (i)

)}
is a set

of edges between these nodes in the layer i, A = {A (v1) , . . . ,A (vn)} is a set of node identities, such that the following
equivalence relation exists: vp (G1)

A
≡ vp (G2)

A
≡ · · ·

A
≡ vp (Gh) for every node vp (i). Finally, S =

{
S1,2, . . . , Sh−1,h

}
,

where Sij =

{
ω

i,j
1 , . . . , ω

i,j
n

}
is the set of interlayer links between the nodes and their copies in different layers. The term

ω
i,j
p = ω

(
vp (i) , vp (j)

)
represents a weight (known as coupling strength) for the pair vp ∈ Vi, vp ∈ Vj for i ̸= j. An

illustration is given in Fig. 2.4.
Chung and Chew [33] considered a multiplex network consisting of 5 layers: (i) a household network, (ii) a dormitory

network, (iii) a workplace network, (iv) a temporal crowd network, and (v) a temporal social gathering network. The
household network accounts for the interactions among family members within a household. It is modeled as a network
of communities of nodes densely connected among them (households) but poorly connected among them. The dormitory
network describes the interactions between workers in dormitory houses, which hold much more people than houses.
The network of workplace interactions accounts for the social contacts among workers at workplace, which in Singapore
represents 40% of the total population. The temporal crowd network accounts for interactions by random groups of people
at public spaces, such as public transportation system and markets which have short-term duration each day. Finally,
the layer of social gathering accounts for events such as religious services, academic conferences, and large-scale dinner
events. The authors focused on the analysis of the epidemic progression in Singapore starting on January 21st, 2020, two
days before the first reported case of COVID-19 in Singapore, and ending on May 13th, 2020. Singapore implemented
contention measures (Circuit Breaker, CB) on April 7th, 2020 to restrict social interactions among its residents.

The multiplex SEIR model was used to analyze the evolution of R0 (namely it should be said Re (t)) for the period of
analysis considering a population of 1 million nodes in the multiplex. In the evolution of this parameter until May 1st
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Fig. 2.5. Illustration of the results obtained by Chung and Chew [33] for the dynamical evolution of the reproduction number with and without
circuit breaker (CB) (a), and with and without gradual lifting (G) (b) measures. Figures provided by the authors.

it can be seen as two small waves followed by a bigger one (see Fig. 2.5). The first occurred on 9 Feb 2020 produced by
an infection cluster at the church of the Grace Assembly of God. The second was on 23 Feb 2020 and it is related to a
private function at SAFRA Jurong. The biggest wave occurred on 5 April 2020 due to reported cases of infection within the
construction site in the Raes Place area which involved 23,000 foreign workers in their dormitories. Chung and Chew [33]
also used their model to forecast the effects of Gradual Lifting (GL) of contention measures at the beginning of June and
the prediction of big wave in case no such gradual lifting is taken into account (see Fig. 2.5).

A work that combined the SEIR model with statistical inference of parameters from linear regression was developed
by Tian et al. [34] who investigated the spread and control of COVID-19 during the first 50 days of the epidemic in China.
They used data about case reports, human movement, and public health interventions. Using linear regression they found
associations between the transmission control measures and the number of cases reported during the first week of an
outbreak in a new location. They found that the Wuhan lockdown is associated with the delayed arrival of COVID-19
in other cities by 2.91 days. Cities that implemented control measures preemptively reported fewer cases on average
(13.0) in the first week of their outbreaks compared with cities that started control later (20.6). As expected, banning
intracity public transport, closing entertainment venues, and closing public gatherings were associated with reductions
in case incidence. Another work combining SEIR and data-driven analysis was performed by Manchein et al. [35] to
analyze the growth of the cumulative number of confirmed infected cases by COVID-19. They found that: (i) power-law
growth is observed in all countries; (ii) by using the distance correlation, the power-law curves between countries are
statistically highly correlated. This suggested a universality of such curves around the world; and (iii) soft quarantine
strategies are inefficient to flatten the growth curves. They also reported that besides the social distancing of individuals
the identification and isolation of infected individuals in a large daily rate can help to flatten the power-laws.

A SEIR model combined with network analysis was also used by Peirlinck et al. [36] to study the outbreak of COVID-19
in China and USA. They found a latent period of 2.56 ±0.72 days for the outbreak in China with a contact period of 1.47
0.32 days, and an infectious period of 17.82 ±2.95 days. In the USA the contact period estimated is of 3.38 ± 0.69 days,
nd a basic reproduction number of 5.30 ± 0.95, which seems very high in comparison with other reports. They then
stimated a USA nationwide peak of the outbreak on May 10th, 2020 with 3 million infections. As on 3rd July 2020 the
umber of infected individuals is 2.4 million, which is still well below the estimation for the May 10th, and the number
f cases is still growing, which indicates that the peak has not been reached yet.
Kucharski et al. [37] combined a modified SEIR model with data analysis for the study of the epidemic in Wuhan and

nternational cases that originated in Wuhan. They estimated how transmission had varied over time during January, 2020,
nd February, 2020. They used data about daily number of new internationally exported cases (or lack thereof), by date of
nset, as of Jan 26, 2020; daily number of new cases in Wuhan with no market exposure, by date of onset, between Dec 1,
019, and Jan 1, 2020; daily number of new cases in China, by date of onset, between Dec 29, 2019, and Jan 23, 2020; and
roportion of infected passengers on evacuation flights between Jan 29, 2020, and Feb 4, 2020. In addition, the authors
lso considered the daily number of new exported cases from Wuhan (or lack thereof) in countries with high connectivity
o Wuhan (i.e., top 20 most at-risk countries), by date of confirmation, as of Feb 10, 2020; and data on new confirmed
ases reported in Wuhan between Jan 16, 2020, and Feb 11, 2020. This work reports a daily reproductive number of 2.35
ne week before travel restrictions and a drop to 1.05 one week after it. They calculated that in locations with similar
ransmission potential to Wuhan in early January, a 50% chance of infection is obtained with at least four independently
ntroduced cases.

In another approach, Block et al. [38] combined a SEIR model with the following two ingredients: (i) a net-
ork of contact probabilities in the population representing the typical contact people had in a pre-COVID-19 world.

hey considered ties between individuals who live geographically close, individuals who are similar on individual
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Fig. 2.6. Illustration of a metapopulation network.

attributes – age, education or income – and individuals who are members of common groups, such as households
and institutions (including schools and workplaces). Additionally, random connections in the population were added;
(ii) actors interact at discrete times with others from their personal network. They then focus on some possible strategies
to reduce the COVID-19 spreading in a post-lockdown world. These strategies are: (a) limiting interaction to a few repeated
contacts akin to forming social bubbles; (b) seeking similarity across contacts; and (c) strengthening communities via
triadic strategies. According to their simulation results ‘‘a strategic social network-based reduction of contact strongly
enhances the effectiveness of social distancing measures while keeping risks lower’’.

The combination of a simple SEIR model and contact tracing allowed Keeling et al. [39] to predict that under effective
contact tracing less than 1 in 6 cases will generate any subsequent untraced infections. This intensive tracing will come at
a high logistical burden with an average of 36 individuals traced per case. Changes to the definition of a close contact can
reduce this burden, but with increased risk of untraced cases. If such definition is too relaxed, then it is unlikely to control
spread. The data for this study was generated by the authors by reporting 50,000 encounters between 5802 respondents
of a cross-sectional survey. The authors then extrapolated this data to generate a pattern of contacts over a 14-day period.
Then, using a latent period of the disease of 4 days, a basic reproductive number of 3, the results were obtained from the
SEIR simulations on the network of contacts.

Another variation of interconnected system which is common in epidemiological modeling is the use of metapopulation
networks. A metapopulation network is a graph G = (V , E), where every node vp ∈ V is formed by Np ∈ N particles
(individuals), which are then colored by a fixed number of colors C ∈ N, which represent the states of the individuals,
e.g., Susceptible, Infected, Recovered. The directed edges

(
vp, vq

)
connects the corresponding nodes in such a way that

they moves particles of different colors between one node to another as illustrated in Fig. 2.6.
Aleta and Moreno [40] implemented a data-driven version of a metapopulation SEIR model that allows obtaining

realistic estimates for the spatial incidence of the disease as well as its temporal dynamics. They applied their model to
the epidemic spreading in Spain, where the spatial network considered consisted of the 52 Spanish provinces. Then, the
disease dynamics is modeled by combining the SEIR model and the mobility of the individuals across the subpopulations.
Interestingly, the authors used a breakdown of inter-province flows in Spain by transportation mode, which includes
airplane, coach, car, ship and train. Due to the differences in the communication routes and geographic position of a
given region respect to another, under the same conditions, the spatial spreading of the disease would be completely
different if the epidemic starts in one region or another. This is well-illustrated by the cases of Barcelona and Madrid,
which are the most important cities in Spain (see Fig. 2.7).

2.2. Models with increased number of compartments

In search of a more realistic description of the COVID-19 outbreak, the number of compartments in which the
population is subdivided needs to be increased. This is the case for the consideration of the existence of an environmental
reservoir. As described in Section 2 the virus contained in large droplets expelled by an infectious individual can remain
at surfaces for periods of time that allow susceptible individuals to be in contact with it as illustrated in Fig. 2.8.

This environmental reservoir (V) can be added as a new compartment into a SEIR model such that we have the
following SEIRV model [41]:

Ṡ (t) = Λ− βE (E) S (t) E (t)− βI (I) S (t) I (t)− βV (V ) S (t) V (t)− µS (t) ,

Ė (t) = βE (E) S (t) E (t)+ βI (I) S (t) I (t)+ βV (V ) S (t) V (t)− (α + µ) E (t) ,

İ (t) = αE (t)− (w + γ + µ) I (t)

Ṙ (t) = γ I (t)− µR (t)
˙

(2.12)
V (t) = ξ1E (t)+ ξ2I (t)− σV (t) ,
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Fig. 2.7. Comparison of the spreading from the two major cities of Spain at to different times as reported by Aleta and Moreno [40]. The reported
values are the median over 103 simulations. The figure is reproduced with permission from the authors.

Fig. 2.8. Schematic illustration of the indirect transmission of COVID-19. An individual sneeze or cough over a surface (left), which is then touched
by another individual (center) who brings the virus from her hands to her respiratory system (right).

where,
V : concentration of the coronavirus in the environmental reservoir;
Λ: population influx;
βE (E): direct human-to-human transmission rate between the exposed and susceptible individuals;
βI (I): transmission rate between the infected and susceptible individuals;
βV (V ): indirect environment-to human transmission rate;
µ: natural death rate of human hosts;
α−1: incubation period between the infection and the onset of symptoms;
γ : rate of recovery from infection;
ξ1: rate of the exposed individuals contributing the coronavirus to the environmental reservoir;
ξ2: rate of the infected individuals contributing the coronavirus to the environmental reservoir;
σ : removal rate of the virus from the environment.
This is the model that Yang and Wang [41] have developed to describe the COVID-19 epidemic in Wuhan, China.

They have assumed that β E , β I and β V are all non-increasing functions and for performing the simulations they
E ( ) I ( ) V ( )
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Fig. 2.9. Scheme of the compartments used in the model developed by Godio et al. [44].

considered that the three transmission rates can be written as:

βE (E) =
βE0

1 + cE
, βI (I) =

βI0

1 + cI
, βV (V ) =

βV0

1 + cV
, (2.13)

where c > 0 is a coefficient. Yang and Wang [41] estimated mean values for all the parameters in the model for the
city of Wuhan based on outbreak data published daily by WHO and other sources. In particular they considered the
reported confirmed cases in Wuhan from January 23 to February 10 in 2020. As mentioned in their work, they do not
consider the change in the way of registering the number of cases occurring from February 12, 2020. Using this approach
the authors obtained R0 = 4.25 as well as the infection risk from each of the three transmission routes, which are,
respectively: R1 = 1.959, R2 = 0.789, and R3 = 1.497, indicating that the highest risk of transmission is from exposed
asymptomatic) to susceptible, followed by environment to susceptible and finally from infectious to susceptible, possibly
ue to isolation measures. They also showed that all the solution orbits converge to the endemic equilibrium, illustrating
ts global asymptotic stability. That is, the coronavirus infection would remain endemic.

Maier and Brockmann [42] modified the SIR mode to include a new compartment, which accounts for general public
ontainment efforts or individual behavioral changes in response to the epidemic. This transforms the model into the
IR-X which accounts for both quarantine of symptomatic infected individuals and population-wide isolation practices.
he model is used to stress the importance of containment strategies to minimize the propagation of the epidemic.
nother model that takes into account quarantine was developed by Zhao and Chen [43] and includes compartments
or Susceptible, Un-quarantined infected, Quarantined infected, and Confirmed infected. the model is then applied to the
nalysis of COVID-19 in (i) Wuhan, (ii) Hubei (excluding Wuhan), (iii) China (excluding Hubei) and (iv) four first-tier cities
f China. Here again the emphasis has been on proposing rigorous quarantine and control measures at some early times
o avoid uncontrolled propagation of the virus.

A more complex model, which starts from the basis of a SEIR scheme, was developed by Godio et al. [44] to study
he evolution of the COVID-19 epidemic in Italy. It considers as before a Quarantine compartment to which Infections
ndividuals are directed to. Another interesting characteristic is that the rates at which quarantined individuals are
ecovered or die are dependent on time. The reason for that assumption is that ‘‘the health system can improve its
apability to treat people over time, e.g., with the introduction of a new therapy’’. In Fig. 2.9 we illustrate the scheme
f the ‘‘generalized’’ SEIR model used by Godio et al. [44] where we included the rates of recovery and death using the
ymbols from the paper. The rest of rates are excluded from the graphic to avoid confusion with previous symbols used
ere. Here the compartment of ‘‘Insusceptible’’ refers to the ‘‘part of the population who for various reasons become
nsusceptible to the disease’’.

The authors used a stochastic approach in fitting the model parameters using a Particle Swarm Optimization (PSO)
olver. Their goal was to improve the reliability of predictions in the medium term (30 days). The time-dependent
ecovery and death rates where considered as exponential functions based on the data collected by Peng et al. [45].
he assumption here, previously considered by Cheynet [46], is that the death rate should become closer to zero as time
ncreases, while the recovery rate converges toward a constant value. Using their model Godio et al. [44] modeled the
volution of the epidemic in Italy as well as on particular Italian regions starting on 1th March until mid May. They used
oth the deterministic solution of the ‘‘generalized’’ SEIR model as well the stochastic solution using PSO. They concluded
hat the deterministic approach is not appropriated to explore the possible solutions of the space-domain due to the
nderdetermination of the mathematical problem. In contrast, the use of PSO shows some advantages for estimating
ifferent scenarios for a 30-day epidemic evolution.
A few models have been developed with a large number of compartments. Wan et al. [47] described the evolution of

OVID-19 in mainland China, excluding Hubei province. Their model consists of the following compartments: Susceptible
S), Exposed (E), Infectious with symptoms (I), Infectious but asymptomatic (A), Isolate susceptible isolates (Si), Quarantine
nfectious pending confirmation (Q), Hospitalized (H) and Recovered (R). This model results in systems of 11 equations
nterconnecting these compartments. The model has to be fed by the following empirical parameters: (1) Probability of
ransmission per contact, β; (2) Initial contact rate, c0; (3) Transition rate of exposed individuals to the infected class, φ;
(4) Probability of having symptoms among infected individuals, θ ; (5) Transition rate of quarantined infected individuals
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o hospital class, η; (6) Recovery rate of symptomatic infectious individuals, γI ; (7) Recovery rate of asymptomatic
nfected individuals, γA; (8) Recovery rate of quarantined infected individuals, γH ; (9) Disease-induced death rate, d;
10) Correction factor of transmission probability with asymptomatic infectious individuals, ξ ; (11) Rate at which the quar-
ntined uninfected contacts were released, µ; (12) Intervention coefficient with respect to contact, q1; (13) Intervention
arameter with respect to patient detection, q2; (14) Intervention parameter with respect to close contact tracing, q3; and
15) Exponential decreasing rate of contact rate δ.

The authors obtained an expression for the effective reproductive number based on the total number of cumulative
eported cases which is set to be T (t):

R0 (t) =
βθc0e−δT (t)

γI + d + q2
+
βξ (1 − θ) c0e−δT (t)

γA
. (2.14)

Then, using the estimated parameters they obtained Re (1) ≈ 3.34 on January 20th and then Re (12) ≈ 0.89 on
January 31st, 2020, indicating a control of the epidemic in mainland China except Hubei province by the end of January.
One of the most interesting conclusions of this study is an alert about what should happen if the quarantine measures
were suddenly relaxed before the pandemic was totally controlled. They considered a total population of 1,336,210,000
inhabitants and using their model they simulated a complete removal of quarantine measure by March 5th and by March
20th. The simulations were performed for two different values of the intervention coefficient with respect to contact:
q1 = 0.2 and q1 = 0.5 indicating an exponential growth in the last case for both starting dates.

Similarly, Ivorra et al. [48] have considered a model with 8 compartments: Susceptible, Exposed, Infectious that will
be detected, Infectious that will not be detected, Hospitalized or in quarantine at home, Hospitalized that will die, Dead,
and Recovered. The model is applied to the study of the propagation of COVID-19 in China (including Chinese Mainland,
Macao, Hong-Kong and Taiwan). Ivorra et al. [48] estimated the need of beds in hospitals for intensive care units and
considered the effects of incomplete data of the results of the model. In addition they estimated the error produced by
the model when identifying the parameters at early stages of the epidemic.

In order to account for the complexities of the transmission mechanism of SARS CoV-2 which include the transmission
from an infection source, possibly bats, to hosts, currently unknown, to a reservoir, like the Huanan Seafood Wholesale
Market, to humans, Chen et al. [49] have constructed a model with 14 compartments. The complexities of this model
can be understood by considering that bats and hosts are divided into four compartments each: susceptible (bats, SB
or hosts SH ), exposed (bats, EB or hosts EH ), infected (bats, IB or hosts IH ), and removed (bats, RB or hosts RH ). People
were divided into five compartments: susceptible people (SP ), exposed people (EP ), symptomatic infected people (IP ),
asymptomatic infected people (AP ), and removed people (RP ) including recovered and death people. The reservoir forms
a unique compartment W . The model was further simplified by ignoring the transmission network of Bats-Host and by
assuming that the initial value of W is a given impulse function. Using this simplified 6-equations model the authors
ound that the value of R0 was 2.30 from reservoir to person and 3.58 from person to person. According to these results
the transmissibility of SARS-CoV-2 ‘‘was higher than the Middle East respiratory syndrome in the Middle East countries,
similar to severe acute respiratory syndrome, but lower than MERS in the Republic of Korea’’.

Another extension of SEIR is the model developed by Eikenberry et al. [50] which includes susceptible (S), exposed
(E), symptomatic infectious (I), hospitalized (H), asymptomatic infectious (A), recovered (R) and death (D) compartments.
The most interesting aspect of this model is that the original 7 equations controlling the inter-compartment dynamics
are split into 14 equations due to the assumption that some fraction of the general population wears masks. Then, the
susceptible population is split into those with SM and without SU masks, respectively. The same happens for the individuals
in each of the other compartments. The masks are considered to have uniform inward efficiency εi, which accounts for
the primary protection against catching disease, and outward efficiency εo, which accounts for source control/protection
against transmitting disease. Then, the basic reproductive number has the following expression:

R0 = β [SU + SM (1 − εi) (1 − εo)]
(

α

ϕ + γI
+
η (1 − α)

γA

)
, (2.15)

here:
β: infectious rate;
SU : proportion of susceptible population without masks;
SM : proportion of susceptible population with masks;
εi: inward efficiency of masks;
εo: outward efficiency of masks;
α: fraction of asymptomatic cases;
ϕ: rate at which asymptomatic are hospitalized;
γI : recovery rate of symptomatic infectious individuals;
γA : recovery rate of asymptomatic infectious individuals;
η : infectiousness of asymptomatic individuals relative to symptomatic ones.
This work provides a remarkable justification for the use of masks during this pandemic as they found that face masks

re useful with respect to both preventing illness in healthy persons and preventing asymptomatic transmission. The
uthors considered hypothetical mask adoption scenarios, for Washington and New York state, which clearly suggests
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Fig. 2.10. Results of the simulations reported by Eikenberry et al. [50] for the cumulative death tolls for Washington state (top panels) and New
York (bottom panels), using a fixed transmission rate, and different permutations of general public mask coverage and effectiveness. Reproduced
with permission.

Fig. 2.11. Scheme of the compartments used in the model developed in [53–55].

that the moderate (50% of population using it) or universal (80% of population using it) adoption of masks would have
prevented between 17 and 45% of projected deaths over two months in New York. Very interesting, even the use of very
weak masks, which have only 20% efficiency, can be useful in reducing the transmission rate as can be seen in Fig. 2.10
when β0 is fixed.

López and Rodó [51] developed an extended stochastic SEIR model, which takes into account susceptible, exposed, in-
fected, quarantined, recovered, death and confined population. They incorporated time-decaying effects for the parameters
controlling the rate at which quarantined population recovered or die, due to potential loss of acquired immunity, people’s
increasing awareness of social distancing and the use of non-pharmaceutical interventions. They then applied their model
to the effects of lockdown and the way in which it is removed to prevent epidemic growth, as well as a potentially larger
second wave of SARS-CoV-2 cases occurring within months. Another model consisting of 8 compartments was developed
and studied by Giordano et al. [52]. The compartments considered are: susceptible (S), infected (I), diagnosed (D), ailing
(A), recognized (R), threatened (T), healed (H) and extinct (E), and the model was collectively termed SIDARTHE. They
applied SIDARTHE to the analysis of the epidemic in Italy and compared the results with real data, where they modeled
possible scenarios of implementation of countermeasures. Accordingly, they concluded that restrictive social-distancing
measures need to be combined with widespread testing and contact tracing to end the ongoing COVID-19 pandemic.

In a series of previous works, the group of Vespignani ([53–55]) developed a compartment model which takes into
account several important characteristics of propagation processes like the one of SARS CoV-2. In this model a susceptible
individual in contact with a symptomatic or asymptomatic infectious person contracts the infection at rate β , or rββ ,
respectively. Then, it enters the exposed compartment where she is infected but is not yet infectious. At the end of the
latency period ε−1, each latent individual becomes infectious, entering the symptomatic compartments with probability
1 − pa or becoming asymptomatic with probability pa. The symptomatic cases are further divided between those who
are allowed to travel (with probability pt ) and those who are not allowed traveling. The model scheme is presented in
Fig. 2.11.

Adapting this model to the situation created by the outbreak of COVID-19, Chinazzi et al. [56] show that, at the start
of the travel ban from Wuhan on 23 January 2020, most Chinese cities had already received many infected travelers.
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Fig. 2.12. Contribution of cases from the 10 Chinese cities with the highest rates of disease to the relative risk of importation in different countries
before (left) and after (right) travel ban in Wuhan as reported by Chinazzi et al. [56].

Consequently, the travel ban from Wuhan delayed only 3–5 days the epidemic progression in mainland China and moved
the focus of the epidemic spread outside China from Wuhan to other major cities in the country. Indeed, they have shown
that before the travel ban, about 86% of the internationally imported cases originated from Wuhan. However, after the
travel ban, the top contributors were Shanghai (28.1%), Beijing (14%), and Shenzhen (12.8%), which accounted for at least
80% of the internationally imported cases (see Fig. 2.12). Their modeling results also indicated that sustained 90% travel
restrictions to and from mainland China only modestly affect the epidemic trajectory unless they are combined with a
50% or higher reduction of transmission in the community.

Another compartment model which accounted for human mobility was developed by Li et al. [57] which divided the
opulation in susceptible, exposed, documented infected, and undocumented infected from a total population in a city.
hey focused on the propagation of COVID-19 within China for which they considered mobility data, a networked dynamic
etapopulation model and Bayesian inference, to infer critical epidemiological characteristics associated with SARS-CoV2.
he mobility data captured individual movement among the 375 cities simulated in the metapopulation model, using
uman mobility data from the Tencent location-based service (LBS) used in popular Tencent mobile phone applications
Apps), such as Wechat, QQ, and Maps. They then estimated that 86% of all infections were undocumented prior to 23
anuary 2020 travel restrictions. Per person, the transmission rate of undocumented infections was 55% of documented
nfections. They were the infection source for 79% of documented cases. This was one of the first clear alarms about the
mportance of tracing undocumented cases by massive tests as it was one of the main causes for the rapid geographic
pread of SARS-CoV2.
A multi-compartment model which also accounts for different layers in which a population can have social contacts

as elaborated by Aleta et al. [58]. The model is built on the basis of a synthetic population divided into three layers (see
ig. 2.13a). The total population considered was of about 85,000 nodes, of which 64,000 are adults and 21,000 correspond
o children (see Fig. 2.13b). Before any containment was introduced the model considered about 5M interactions. The
nalysis is focused on the Boston area, USA, from which data about social contacts was obtained. The multi-compartments
cheme is illustrated in Fig. 2.13c, where the population was split into the following compartments: Susceptible (S), Latent
symptomatic (LA), Latent symptomatic (LS), Pre-symptomatic (PS), Infectious asymptomatic (IA), Infectious symptomatic
I ), Hospitalized (H), Hospitalized in intensive care (ICU) and Recovered (R) individuals. Aleta et al. [58] considered the
S
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Fig. 2.13. Modeling scheme of work of Aleta et al. [58] where the weighted multilayer synthetic population is built from mobility data in the
metropolitan area of Boston (a). The agent-based system of adults and children, whose geographical distributions (b). The compartmental model
used (c) where the description of the variables is given in the text. Figure provided by the authors.

effects of three different levels of confinement: (i) school closures; (ii) partial ‘‘stay at home; (iii) full lock-down and
confinement. They concluded that to avoid a saturation of the health care system it is necessary to implement strict
social distancing combined with robust levels of testing, contact-tracing and household quarantine. Interestingly, they
found that by identifying 50% of the symptomatic infections, and tracing 40% of their contacts and households, it is assured
a reduction in transmission that allows the reopening of economic activities without collapsing the health care system.

Finally, we consider a model that accounts for several important characteristics of the contagion process relevant to
COVID-19. The model is developed by Arenas et al. ([59,60]) as an extension of previous metapopulation schemes incor-
porating recurrent mobility patterns previously developed by the same authors [61–63]. In addition to the consideration
of several compartments as in the majority of models, this one also considers an explicit and realistic network of contacts,
and a differentiation of age groups during the course of the epidemic. Then, the model is built by dividing the population
into the following compartments: susceptible (S), exposed (E), asymptomatic infectious (A), infected (I), hospitalized to
Intensive Care Unit, ICU (H), dead (D), and recovered (R). In each compartment the population is divided into NG age
strata: young people (Y), with age up to 25; adults (M), with age between 26 and 65; and elderly people (O), with age
larger than 65. Finally, the population is assigned to different geographic regions or patches. A sketch of the model is
represented in Fig. 2.14.

Let ρm,g
i (t) be fraction of agents in the compartment m ∈ {S, E, A, I,H,D, R}, which are in the age stratum g ∈ NG and

which is in the geographic patch i at time t . The system of equations for this model is given below

ρ
S,g
i (t + 1) = ρ

S,g
i (t)(1 −Π

g
i (t)) ,

ρ
E,g
i (t + 1) = ρ

S,g
i (t)Π g

i (t) + (1 − ηg )ρE,g
i (t)

ρ
A,g
i (t + 1) = ηgρ

E,g
i (t) + (1 − αg )ρA,g

i (t)

ρ
I,g
i (t + 1) = αgρ

A,g
i (t) + (1 − µg )ρ I,g

i (t)

ρ
H,g
i (t + 1) = µgγ gρ

I,g
i (t) + ωg (1 − ψg )ρH,g

i (t) + (1 − ωg )(1 − χ g )ρH,g
i (t)

ρ
D,g
i (t + 1) = ωgψgρ

H,g
i (t) + ρ

D,g
i (t)

R,g g g I,g g g H,g R,g

(2.16)
ρi (t + 1) = µ (1 − γ )ρi (t) + (1 − ω )χ ρi (t) + ρi (t) ,
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Fig. 2.14. Scheme of the compartment model used by Arenas et al. [59,60]. Figure provided by the authors.

here
Π

g
i : probability of getting infected from asymptomatic or infected individuals;

ηg : probability of exposed individuals of becoming asymptomatic;
αg : probability of asymptomatic to become infected;
µg : escape rate from infectious state;
γ g : probability of requiring hospitalization at ICUs;
ωg : probability of individuals in ICUs to die;
ψg : rate at which individuals at ICUs die;
χ g : rate at which ICUs discharge.
The authors then applied their model to the analysis of the epidemic impact in Spain, by considering the autonomous

egions in which the country is divided and the mobility between communities, which represents the network connecting
he metapopulations of each of the patches or regions. The data about the population and mobility were taken from the
ational Institute of Statistics of Spain. According to their results the peak of incidence will happen in the first half of
pril 2020 in absence of mobility restrictions for all Spanish communities (see Fig. 2.15). Accordingly, the results point
ut to critical situation of the Spanish health capacity system, in particular that for intensive care units, from the end of
arch. They show different epidemic containment scenarios and conclude that total lockdown was a necessary measure

o avoid a massive collapse of the Spanish national health system.
In a subsequent study [59], the authors refined the compartmental model shown above to account for the effects of

onfinement and social distancing. There, they put the focus on the evolution of the effective reproductive number R(t)
or each subpopulation and age group, allowing to monitor the effects of the different lockdown measures. The integration
f these containment measures into the Markovian model yields an effective reproduction number for each municipality
nd age group, that after some simplifying assumptions reads:

Rg (t) =(βAτA + βIτI ) (1 − κ0(1 − φ))
(
κ0k

g
home + (1 − δ)(1 − κ0)k

g
home+work

)
×

G∑
h=1

Cgh
⟨ρS,h(tc)⟩ ,

(2.17)

here κ0 is the fraction of individuals confined in their households, φ is the permeability of the confinement, and δ
ccounts for the reduction of social contacts for the non-confined population, i.e. the social distancing measures. The
ffective reproduction number allows to pinpoint the degree of confinement needed to bend the epidemic curve (see
ig. 2.16).
In Table 1 we resume the results previously described in this Review, which use compartmental models for investi-

ating COVID-19 epidemiological parameters.

.3. Non-compartmental models

Although most of the works reported on modeling the epidemic evolution of COVID-19 are based on compartment
odels, other approaches, mainly statistical ones, have been used. In one of these works, Wells et al. [64] used maximum

ikelihood estimation to analyze the impact of international travels and border control on the global spread of COVID-
9. They calibrated the daily probability that an infected person would travel outside of mainland China by fitting the
redictions of exported cases to reported international incidence for cases that had a travel history to China. The model
onsiders the average duration of the incubation period, and longest time window over which a symptomatic case could
ravel, which was estimated from an empirical distribution of the duration between symptom onset and first medical
isit. Then, the risk of an infected case being exported from Wuhan city was evaluated. The model was also fed from the
light data connecting different cities, such that the probability of travel for an infected person can be estimated. From
his, the authors calculated the country-specific risk of importation of an infected individual, which was then validated for

1 countries. Wells et al. [64] also calculated likelihood distributions of the time between arrival and symptom onset to
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Fig. 2.15. Illustration of the results reported by Arenas et al. [60] for each autonomous region in Spain. The solid line is the result of the epidemic
odel, aggregated by ages, for the number of individuals inside compartments (H+R+D) that corresponds to the expected number of cases, and dots
orrespond to real cases reported. Figure provided by the authors.

stimate the incubation period of cases imported. Finally, they also evaluated the effects of taking some border controls
o avoid the entrance of infected individuals to a given airport. All in all, this work reports that the risk of exporting
ases from mainland China before January 13th 2020 was of 95%, which means 779 cases exported by February 15, 2020
efore any border or travel restrictions were imposed. The implementation of such restrictions by Chinese government
revented 70.5% of cases.
A work reported by Wang et al. [65] used statistical and network analysis of 1212 patients in China and infers some

pidemiological parameters of the spread of COVID-19 in that country. They started by estimating the incubation period
sing maximum likelihood estimation from the assumption that the incubation time τ follows the logarithmic normal

distribution: ln τ ∼ N
(
µ, σ 2

)
, where µ and σ 2 are estimated from data. They estimated average, mode and median

incubation time periods are 7.4, 4 and 7 days, respectively, with incubation periods of 92% of people of no more than 14
days. Wang et al. [65] constructed ‘transfer’ networks where the nodes represent dates between January 5th and February
12th. Two nodes i and j are connected if an individual exposed to the disease at date i developed symptoms or is diagnosed
at date j. A weight is assigned to each of the edges indicating the number of patients from a total of 483, which were
transferred from one state to another at the corresponding dates. Self-loops corresponds to cases were exposition and
symptoms/diagnostic coincide in time. They then calculated the in- and out-degrees for each date, which gives the total
number of patients with clinical symptoms or diagnosis, and the total number of exposed persons that will be confirmed
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Fig. 2.16. Left: Value of the effective reproduction number, R(tc ), when containment measures are taken as a function of the confinement κ0 and
social distancing δ computed from Eq. (2.17). Right: Evolution of new cases for different values of confinement κ0 when social distancing is fixed
to δ = 0.4.

Fig. 2.17. Illustration of the weighted in- and outdegree distributions of the directed graph studied by [65]. Figure provided by the authors.
Source: Reproduced with permission.

o be infected later, respectively. Interestingly, as illustrated in Fig. 2.17 the plot of the in- and out-degrees of each date
eveal some characteristics of the epidemic outbreak. Namely, it revealed the existence of three stages of the epidemic.
ne stage was before January 13th, where the numbers of both exposed and confirmed patients were low, and the number
f exposed (outdegree) patients was higher than confirmed patients (indegree); a second stage, between January 13th and
3rd, where the disease was in outbreak period, with the number of exposed and confirmed cases was high, although the
umber of exposed cases was higher than the diagnosed ones. The last stage, after January 23rd, was marked by a number
f confirmed cases that were higher than that of exposed ones, and the confirmed cases roughly decreased with time. This
ay be attributed to the adoption of prevention and control measures. Finally, the authors created a network from 1105
atients that have been treated in 248 hospitals, 123 interhospital transfer relationships that involved 206 patients, and
08 patients that were clustering infected. This network contains hospitals and patients as nodes, and patient–patient,
ospital–hospital and patient–hospital edges. The first kind of edges represents ties between patients (family friendship,
olleagues), the second represents transfers of patients between hospitals and the last represents that the patient was
reated in that hospital. This complex system would be much better represented as a multilayer network. From the analysis
f this heterogeneous network they concluded that a few hospitals encompass a large number of patients in treatments,
nd that the aggregate outbreak phenomena were ubiquitous.
Another statistical analysis of the epidemic was performed by Zhao et al. [66] by using correlational analysis. The work

ocuses on quantifying the association between the load of domestic passengers departed from Wuhan and the number
f confirmed cases in a 10 city-clusters. The correlational analysis is based on the model:

log
[
E

(
ci,t

)]
= αi · provincei + β · ξi,t−τ · εt−τ , (2.18)

where ci,t is the daily number of new cases in the ith provincial region at time t , E (·) is the expectation, provincei is a
dummy variable for the corresponding province, αi is a locality-varying interception term, ξi,t−τ is the daily number of
passengers from Wuhan to the province i, τ denotes the delay from being infected to be detected, and εt−τ is the number
of new cases in Wuhan. Using goodness of fit based on the McFadden’s pseudo-R-squared, they found τ = 5 days, which
agrees very well with the mean incubation period of the infection at 5.2 days. They found a statistically significant positive
association between the load of passengers multiplied by the local infectivity in Wuhan and the number of cases reported
outside Wuhan. According to their model, increasing by 100 both the number of infected people in Wuhan and the number
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Table 1
Resume of the compartmental models used to analyze COVID-19 epidemiological parameters described in the current review.
Authors Model Findings Ref.

D’Arienzo & Coniglio SIR 2.43 ≤ R0 ≤ 3.10 for Italy [17]

Wangping et al. SIR R0 = 3.10 for Italy, R0 = 2.48 for Hunan, China[18]extended SIR R0 = 4.34 for Italy, R0 = 3.16 for Hunan, China
You et al. SIR effects of control measures on R0 for several

cities in China
[19]

Roda et al. SIR/SEIR found that increasing complexity of the
models drops model reliability

[20]

Fanelli & Piazza SIRD prediction of peak and number of dead in Italy[21]
Anastassopoulou et al. SIRD estimation of the number of casualties in

Hubei, China
[27]

Prasse et al. SIR + networks evolution of epidemic with disaggregated β [23]
Zhou et al. Fang et al. SEIR analytic expression of Re (t) [25,26]
Hou et al. SEIR effects of quarantine and isolation on epidemic

peak
[27]

Fox et al. SEIR + hospitalized and ICU cases R0 = 2.4 without interventions, R0 = 1.6 with
nonpharmaceutical interventions in South
Wales, Australia

[28]

Grant SEIR overestimation of epidemic duration [30]
Small & Cavanagh SEIR + networks necessity of including contact networks [31]
Linka et al. SEIR + transport networks good predictive capacity at earlier stage of the

epidemic
[32]

Chung & Chew SEIR + multiplex evolution of Re (t) in Singapore [33]
Tian et al. SEIR + statistical inference effects of lockdown in Wuhan, China [34]
Manchein et al. SEIR + data analysis power-law of epidemic growth across

countries
[35]

Peirlinck et al. SEIR + networks reports latent and contact periods in China
and USA

[36]

Kucharski et al. SEIR + data analysis R0 = 2.35 without interventions, R0 = 1.05
one week after contention in Wuhan, China

[37]

Block et al. SEIR + networks effects of reducing social contacts on epidemic
progression

[38]

Keeling et al. SEIR + contact tracing effects of contact tracing on detectability of
the disease

[39]

Aleta and Moreno SEIR + metapopulation + data analysis epidemic progression at region-level in Spain [40]
Yang & Wang SEIRV R0 = 4.25 for Wuhan, China, disaggregated

reproduction numbers for E–I: R1 = 1.959, S–I:
R2 = 0.789, and V–I: R3 = 1.497

[41]

Maier & Brockmann SIR-X effects of quarantine and asymptomatic on
epidemic progression

[42]

Zhao & Chen SIR + quarantined and unquarantined
confirmed infected

effects of rigorous quarantine on epidemic
progression

[43]

Godio et al. SEIR + quarantine and insusceptible evolution of epidemic in Italy [44]
Wan et al. SEIR extended to 11 compartments Re = 3.34 on January 20th and Re = 0.89 on

January 31th in Wuhan, China
[47]

Ivorra et al. SEIR extended to 8 compartments necessity of beds in hospitals for ICUs in China[48]
Chen et al. SEIR extended to 14 compartments R0 = 2.30 from reservoir to person, R0 = 3.58

from person to person
[49]

Eikenberry et al. SEIR extended to 7 compartments effects on R0 of wearing face masks [50]
López & Rodó stochastic extended SEIR effects lockdown and time-decaying

parameters on disease progression
[51]

Giordano et al. extended SIR (SIDARTHE) effects of social measures on the evolution of
epidemic in Italy

[52]

Chinazzi et al. extended SEIR + traveling network effects of traveling from China on the progress
of the epidemic on the world

[56]

Li et al. SEIR extended to documented and
undocumented + mobility

effects of undocumented infections on disease
transmission

[57]

Aleta et al. extended SEIR + multilayer effects of different contention measures on
epidemic in Boston, USA

[58]

Arenas et al. SEIR extended to 7 compartments + networks
+ age strata

effects of epidemic on health care system at
region-level in Spain and analytical analysis of
Re

[59,60]

of passengers departing from that city, will produce a likely increase of 16.25% in the daily number of cases offsite detected
on average.

A very important aspect to consider when modeling disease spreading is that population level parameters, like the basic
reproductive number R , can hide the relevance of individual variation in infectiousness. This is particularly important
0
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Fig. 2.18. Forecasts made by Perc et al. [69] of COVID-19 cases for the United States, Slovenia, Iran, and Germany. Black solid line denotes the
actual data, which were for this analysis last updated on March 29th. The different output scenarios are displayed in different colors: nothing would
change (solid blue line); maximal daily growth rate increased by 20% (solid red line); daily growth rate would drop to zero (green line); equally
spaced decreasing daily growth rates from top to bottom (orange and olive dashed lines). Figure reproduced with permission of the authors.

when ‘superspreading events’, where individuals infect unusually large numbers of secondary cases. The investigation of
this phenomenon was conducted by Lloyd-Smith et al. [67], who considered branching process and statistical analysis
to analyze the influence of individual variation in infectiousness on disease emergence for several diseases. They used
contact tracing data from eight directly transmitted diseases, and showed that the distribution of individual infectiousness
around R0 is often highly skewed. According to their modeling results individual-specific control measures outperform
population-wide measures. Another study based on branching process model was developed by Hellewell et al. [68] where
the number of potential secondary cases produced by each individual was obtained from a negative binomial distribution
with a mean equal to the reproduction number. The model also uses heterogeneity in the number of new infections
produced by each individual. This study focuses on assessing the feasibility of contact tracing and case isolation to control
outbreaks of COVID-19. The authors simulated new outbreaks starting from 5, 20, or 40 introduced cases, and concluded
that contact tracing and isolation might not contain outbreaks of COVID-19 unless very high levels of contact tracing are
achieved. More importantly, if there is a high fraction of transmission from asymptomatic infected individuals, the model
shows that this strategy might not achieve control within 3 months.

In a work published by Perc et al. [69], the authors developed a simple iteration method based on the daily values
f confirmed cases as the only input to forecast the progression of COVID-19 in different countries. They determined
aximally allowed daily growth rates to explore different scenarios which includes departing from the exponential
rowth. Accordingly, the authors show that daily growth rates should be kept at least below 5% to converge to plateaus
n short times as illustrated in Fig. 2.18 for different countries.

Finally, we briefly describe a model developed by researchers at the Imperial College of London [29], which is based
n previous developments by [70]. The model has reached wide diffusion through academic3 and nonacademic media. It

is based on stochastic, spatially structured individual-based simulations, in which at any time-step of ∆T = 0.25 days, a
susceptible individual i has probability 1− exp(−λi∆T ) of being infected, where λi is the instantaneous infection risk for
ndividual i, which depends on several parameters. Individuals can be infected in household, places, or by random contacts
n the community. The model is fed by household size and age structure data, school size data and school allocation model,

3 See for instance: https://www.nature.com/articles/d41586-020-01003-6.

https://www.nature.com/articles/d41586-020-01003-6
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workplace data, and commuting distance data. This group has been applying this model to respond to different questions
related to the COVID-19 and posting systematic reports about their findings.4 By July 2nd, there were 29 Reports published
by the Imperial College group. The model sometimes gives very wide margins for the parameters estimated, such as for the
number of infected individuals in Spain and Italy, where the predictions in Report 13 by [71] were: Spain 15% [3.7%-41%]
and Italy 9.8% [3.2%-26%] for the percentage of total population infected (mean [95% credible interval]) (see Discussion
for the comparison with more recent results).

2.4. On the predictability of epidemiological models

An important question related to the epidemiological models previously considered is whether they can accurately
predict some important future events of the epidemic evolution. In particular, Castro et al. [72] addressed the question of
predictability focusing on two important events: the turning point and the end of an expanding epidemic. They concluded
that these events cannot be accurately predicted because ‘‘exponentially growing dynamics are intrinsically unpredictable’’
in a similar way as chaotic events. They considered a variation of a SIR model in which a new class C of individuals sent
to confinement is considered. These individuals are susceptible but not infected. They also consider a compartment for
people who die, which is different from those who recover from the disease. The general scheme and equations of the
model are presented below:

Ṡ (t) = −βS (t) I (t)− pS (t)+ qC (t) ,

Ċ (t) = pS (t)− qC (t) ,

İ (t) = βS (t) I (t)− (r + µ) I (t) ,

Ṙ (t) = rI (t) ,

Ḋ (t) = µI (t) .

(2.19)

Then, using data for the epidemic in Spain the authors applied a Bayesian approach to fit the data, assuming that the
numbers of infected, recovered and dead are log-normally distributed with unknown variance and mean given by the
expression for I (t) obtained from the previous model. Their results are illustrated in Fig. 2.19. As can be seen percentiles
5% and 95% provide contradictory results: either the epidemic curve dies out or it will keep growing exponentially, albeit
at a different rate. The authors remarked that this is a consequence of the inherent variability of the fitted parameters as
summarized by the posterior distributions and the exponential character of the epidemic.

Castro et al. [72] also analyzed the distribution of the day in which the model predicts the maximum peak of the
epidemic in Spain conditioned on it actually occurring. Accordingly, it is concluded that the model can infer neither the
peaking time nor whether there is a peak at all. From further analysis of the predictability of this class of models the
authors concluded that the problem is not produced by the quality of data, although better data is certainly needed, but
that the problems arise because ‘‘small variations in the parameters bring about growing uncertainties as time elapses’’.
Therefore, the problem is not solved by adding more variables or compartments as the problem of the susceptibility to
initial condition will persist.

As we have resumed before, the statistical approaches, which are intrinsically probabilistic, fully rely on past data to
predict the near future. As stressed by Castro et al. [72] these approaches ‘‘only yield likelihoods of different scenarios,
with intervals of confidence that grow extremely fast as time elapses’’. They consider that the model, previously described
here, elaborated by researchers at Imperial College, ‘‘yields the most trustable (probabilistic) predictions to date’’ because
they are compatible with multiple scenarios in most countries in the mid-term. However, the huge intervals of confidence
inherent to their approach also limit predictability to the near future.

4 The Reports can be reached at: https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/covid-19-reports/.

https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/covid-19-reports/
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Fig. 2.19. Fit to data for the daily number of active cases in Spain from March 1st to March 29th as reported by Castro et al. [72]. The solid line
represents estimation using the median parameters for each posterior in the model. The shaded area represents the 95% predictive posterior interval.
Inset: same data and curves with linear vertical scale. The figure is reproduced with permission of the authors.

3. Modeling for drug repurposing

Currently, there are no specific drugs against SARS CoV-2, the virus that produces COVID-19. In the period between
012 and 2017, the Food and Drug Administration (FDA) of USA approved a total of 24 new antiviral agents, i.e., in the
ategories of new molecular entity or new combination [73]. From these antiviral drugs 11 were for treating HIV-1, 10
or treating Hepatitis C virus, one for treating influenza, one for Hepatitis B virus, and one for Cytomegalovirus. In total, in
he ten years between 1987 and 2017, FDA approved 108 antiviral drugs, none of them is for treatment of a coronavirus.
hese numbers do not parallel the research done in these years about the development of new potent antiviral compounds.
his situation is not alien to the whole modern pharmaceutical research which is characterized by a high attribution rate,
here only 10% of compounds that arrive at Phase II clinical trials are eventually approved as a drug. Most of the failures
re due to safety concerns or poor efficiency.
An alternative route for drug discovery which has increased its popularity in recent years is drug repurposing (also

nown as drug repositioning, reprofiling or re-tasking). It consists in strategies for identifying new uses for previously
pproved or investigational drugs [74–78]. That is, a new use outside the scope of the original medical indication is found
or a previously developed drug. The advantages of this approach are that the repurposed drug: (i) has previously being
ound to be sufficiently safe in humans, (ii) most of the preclinical tests, safety assessments, formulation development,
harmacokinetics, administration–distribution–metabolism–excretion (ADME), etc. of the repurposed drug are known or
n advanced stages of development. Therefore, the time and investment needed for repurposing a known drug to a new
se are significantly smaller than those for developing a new one.
In the case of antiviral drugs the following scenarios of drug repurposing have been identified [79]:

(1) Same target–new virus: Consists in finding activity against other virus for a known antiviral drug for which is
known its specific viral target or cellular function/pathway. For instance, favipiravir which was approved for treating
influenza and repurposed against Ebola and Zika viruses;

(2) Same target–new indication: Consists in identifying a non-antiviral drug that acts on a pharmacological target, e.g., a
protein or a pathway, which exists in a virus, therefore exploiting this drug as an antiviral therapeutic agent. For
instance, the anticancer drug imatinib that is under studies to be repurposed against pathogenic coronaviruses;

(3) New target–new indication: Consists in finding a non-antiviral drug with a specific target not existing in viruses
to have a new molecular target which exists in a virus. For example, the antimicrobial ivermectin which shows
inhibition of viral replication.

part from imatibib, which was previously mentioned, in 2018 there were other two drugs under study to be repurposed
gainst MERS- and SARS-CoV. They are GS-5734 (an investigational antiviral drug) under studies in nonhuman primates,
nd chlorpromazine (approved antipsychotic) under study in infected cells in vitro.
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Fig. 3.1. Illustration of the life cycle of the SARS CoV-2 based on current knowledge. The graphics were prepared using Motifolio (https:
//www.motifolio.com/).

In general, drug repurposing consists of the following three steps:

• hypothesis generation, where the candidate molecule is identified;
• mechanistic assessment of the drug effects in preclinical models;
• evaluation of efficacy in phase II clinical trials.

The hypothesis generation is a critical step of the whole process and several computational techniques have been
developed to make this process more efficient. Some of these computational approaches are described below, but before
we resume some of the most important facts about the biology of SARS CoV-2 which are essential for drug repurposing.

3.1. SARS CoV-2

The virus that produces COVID-19 is a Betacoronavirus known as SARS CoV-2. It is an enveloped, single-stranded
positive-sense RNA genome virus of a spherical shape with a diameter between 60 and 140 nm. The life cycle of SARS
CoV-2 is illustrated in Fig. 3.1 (see [80–83]). It starts when SARS CoV-2 enters human cells by means of receptor-mediated
endocytosis mechanism, in which its spike glycoprotein S, previously preprocessed by the transmembrane serine protease
2 (TMPRSS2), binds to the host receptor Angiotensin-Converting Enzyme-2 (ACE2) (1). In the interior of the human cell,
the virus enters in the form of an endosome (2), where cathepsin L, an endosomal acid protease, activates the spike
protein by cleaving the protein into S1 and S2. At this point, the S2 protein fuses the membrane of the virus with that
of the endosome (3), which results in the release of the viral material, RNA and proteins, into the human cell cytoplasm.
Now, viral mRNA is translated (4) by using the human cell ribosome to form two viral replicase polyproteins: pp1a and
pp1ab (5). These two polyproteins are then cleaved by the Papain-like protease and 3C-like (main) protease, resulting in
16 non-structural proteins (nsp) (6). A replicase–transcriptase complex is then assembled with some of these proteins and
the viral RNA (7). It drives the production of subgenomic RNA(+) through transcription (8) and of pre-genomic RNAss(-)
(8a) which is replicated to genomic RNAss(+) (8b). The subgenomic RNA(+) is now translated into structural proteins
(9), such as the spike S protein, envelope proteins (E), membrane proteins (M), nucleocapsid proteins (N), and several
Open reading frame proteins (Orf). All of them enter the endoplasmic reticulum (10) where the nucleoprotein complex is
formed between the nucleocapsid protein and the (+) strand genomic RNA. Finally, the assembly of all proteins and RNA
into a new virus particle is carried out in the Golgi apparatus of the human cell (11). The virus is then expelled from the
cell via exocytosis (12) and starts its maturation to start a cycle again (13).

The 29 proteins produced by SARS CoV-2 are described in Table 2 (see [84]). They constitute potential pharmacological
targets for drug repurposing, which is a process described in the next subsection.

https://www.motifolio.com/
https://www.motifolio.com/
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Table 2
Proteins in the SARS CoV-2, their names and brief description of their function.
No. Protein Description

1 nsp1 Suppresses host antiviral response
2 nsp2
3 nsp3 nsp3–nsp4–nsp6 complex involved in viral replication
4 nsp4 nsp3–nsp4–nsp6 complex involved in viral replication
5 nsp5 Main protease (3C-like)
6 nsp6 nsp3–nsp4–nsp6 complex involved in viral replication
7 nsp7 nsp7–nsp8 complex is part of RNA polymerase
8 nsp8 nsp7–nsp8 complex is part of RNA polymerase
9 nsp9 ssRNA binding
10 nsp10 Essential for nsp16 methyltransferase activity
11 nsp11 Short peptide
12 nsp12 RNA polymerase
13 nsp13 Helicase/triphosphatase
14 nsp14 3’–5’ exonuclease
15 nsp15 Uridine-specific endoribonuclease
16 nsp16 RNA-cap methyltransferase
17 S Spike protein, mediates binding to ACE2
18 Orf3a Activates the NLRP3 inflammasome
19 Orf3b
20 E Envelope protein, involved in virus morphogenesis and assembly
21 M Membrane glycoprotein, predominant component of the envelope
22 Orf6 Type I IFN antagonist
23 Orf7a Virus-induced apoptosis
24 Orf7b
25 Orf8
26 N Nucleocapsid phosphoprotein, binds to RNA genome
27 Orf9b Type I IFN antagonist
28 Orf9c
29 Orf10

3.2. Repurposing based on molecular docking

Molecular docking consists on predicting, by means of structure-based computational strategies, the interactions
etween a ligand and a target. Some potential targets have been identified in the literature for SARS CoV-2 [85]. The target
s typically a receptor in the virus, e.g., a protein. The first stage for the drug repurposing process is the identification of
otential receptor targets in the virus. Once the receptor is known, it is necessary to identify its potential binding sites,
hen multiple drugs could be interrogated against that specific binding site in the target. According to De Clercq and
i [86], 3-chymotrypsin-like (main) protease, papain-like protease, helicase, RNA-dependent RNA polymerase and the
pike protein are attractive targets to develop antiviral agents against SARS CoV-2.
We should distinguish here between two different scenarios. In the first scenario we consider the existence of the

hree-dimensional (3D) structure of the protein target in a complex with an inhibitor. In this case we already can directly
pply docking algorithms for a series of known drugs, such as those in large libraries of ligands, into the binding site where
he inhibitors have been found experimentally. Such 3D structures can be obtained either by Nuclear Magnetic Resonance
NMR), X-rays crystallography or cryo-microscopy and are commonly deposited in the Protein Data Bank (PDB) [87].
n the second scenario we consider that such 3D structure of potential targets does not exist and they should be built
y comparative models. Once, such structures are obtained it is necessary to find the potential binding sites in which
nhibitors can be docked. We will consider both scenarios here for the case of SARS CoV-2.

By the time of writing this article (24th June, 2020) the structures of 5 out of the 29 proteins of SARS CoV-2 have been
eported forming complexes with inhibitors. Notice that other structures of SARS CoV-2 proteins have also been solved
ut not in the presence of inhibitors (see next Subsection). They are (see Fig. 3.2) the main or 3CL protease (a) [88],
apain-like protease (b) [89], nsp15 endoribonuclease (c) [90], nsp12–nsp7–nsp8 complex bound to the template-primer
NA (d) [91] and nsp16–nsp10 heterodimer (e) (to be published).

.2.1. Inhibitors of the main protease
The 3D structure of the main protease of SARS CoV-2 was resolved using X-rays crystallography by several authors.

ome of these structures are for complexes between Mpro and inhibitors that have been found to bind the active site of
he main protease. In this case it is possible to directly apply docking strategies for drug repurposing. The main goal here
s to predict the best conformations/orientations of a ligand within the protein binding site. Docking process consists in
ffectively sampling the conformational space described by the free energy landscape to find conformations/orientations
hat minimize a given scoring function, which should associate the native bound-conformation to the global minimum
f the energy hypersurface. Liu and Wang [92] have classified the existing scoring functions into four categories:
i) ‘‘force-field-based’’ or ‘‘physics-based’’, (ii) ‘‘empirical’’ or ‘‘regression-based’’, (iii) ‘‘knowledge-based potential’’, and
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Fig. 3.2. Crystal structures of 3CL protease (a), papain-like protease (b), nsp15 endoribonuclease (c), nsp12–nsp7–nsp8 complex bound to the
template-primer RNA (d) and nsp16-nsp10 heterodimer (e) with inhibitors. The inhibitors are marked with a yellow arrow. The PDB structures
correspond, respectively, to: 6Y2G [88], 6WX4 [89], 6WXC [90], 7BV2 [91] and 6WKQ (to be published).

(iv) ‘‘descriptor-based’’ or machine-learning based’’ ones. In the studies reported so far for drug-repurposing against SARS
CoV-2, the scoring functions that have been used belong to the categories (i) and (ii). A ‘‘physics-based’’ scoring function
has the following general form:

△Gbinding = △Evdw + △Eelectrostatic + △EH-bond + △Edesolvation, (3.1)

where the △E terms account for the energy change due to: van der Waals, electrostatic, hydrogen bond and desolvation
interactions between the ligand and the protein. Empirical scoring functions compute the fitness of protein–ligand binding
as the sum of contributions of different individual terms which represent some important energy factor of the binding.

In a recent work, Jin et al. [93] determined the structure of the main protease Mpro of SARS CoV-2 bounded to
the inhibitor denoted as N3. In another study, Zhang et al. [88] determined the 3D structure of the main proteinase
of SARS CoV-2 bounded to an α-ketoamide inhibitor. These structures have been the template for several studies of
virtual screening against the main protease of SARS CoV-2. In one of these studies, Ton et al. [94] used a modification
of the molecular docking protocol Glide,5 known as Deep Docking, to virtually screening 1.3 billion compounds from
ZINC15 library6 against the main protease of SARS CoV-2. Using this deep learning platform that provides fast prediction
of docking scores, they identified 1000 potential ligands for SARS-CoV-2 Mpro. In another study, Fischer et al. [95] also
performed docking studies of a large dataset of compounds on Mpro of SARS CoV-2. In this case they screened a library
of over 687 million compounds. They combined this search with molecular dynamics simulations used to validate the
stability of the ligand–Mpro complexes which resulted in a list of 11 drug-like compounds with improved binding free
energy to the target protease relative to the inhibitor N3. The same 3D structure was used as the basis for the virtual
screening of drug-like compounds using an advanced deep Q-learning network with a fragment-based drug design strategy
[96]. The authors reported a series of 47 lead compounds which can be used as potential candidates for researchers in
their development of drugs against SARS-CoV-2.

The previously mentioned studies cannot be considered as examples of drug repurposing as they are lead development
studies. However, the previously mentioned study of Jin et al. [93] also included a virtual screening strategy to identify
known drugs to be repurposed against SARS CoV-2. They used the N3–Mpro complex as a model for identifying lead
inhibitors using in silico screening based on Glide. They interrogated chemical compounds from an in-house database
and found that cinanserin fits adequately into the substrate-binding pocket. Cinanserin is a well-known serotonin
antagonist discovered in the 1960s and which was previously identified as an inhibitor of SARS CoV. The half-maximum

5 A docking program that uses an empirical scoring function. See https://www.schrodinger.com/glide.
6 https://zinc15.docking.org/.

https://www.schrodinger.com/glide
https://zinc15.docking.org/
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nhibitory concentration of this compound for Mpro is IC50 = 125µM. In another repurposing study Khan et al. [97]
used molecular docking to identify potential hits followed by studies of molecular dynamics simulation and binding free
energy calculations to evaluate the dynamic behavior, stability of protein–ligand contact, and binding affinities of the hit
compounds. They found that three FDA approved antiviral drugs: Remdesivir (broad spectrum antiviral), Saquinavir (anti-
HIV), and Darunavir (anti-HIV), are promising hits against SARS-CoV-2 main protease. Finally, we mention the work of
Tsuji [98] who interrogated the molecules on the ChEMBL database7 to find inhibitors of the SARS CoV-2 main protease. In
this case the virtual screening analysis was carried out on the basis of the 3D structure of Mpro bounded to an α-ketoamide
obtained by Zhang et al. [88]. Then, Tsuji [98] screened all 127,561 distinct compounds in the database using a molecular
docking program that uses a ‘‘physics-based’’ scoring function and found 64 potential drugs. These drugs included 11 FDA
approved, 14 clinical and 39 preclinical drugs. The approved drugs include the antibacterial: sulfamethizole, sulfathiazole,
kanamycin, tobramycin, and phthalylsulfathiazole; the neuropsychiatric: droperidol, eszopiclone and homotropine; the
antineoplastic: alpelisib; the cardiovascular: tizanidine; and the gastrointestinal: mannitol.

Hall Jr and Ji [99] used the 3D structure of Mpro with the inhibitor N3 (PDB ID: 6LU7) to perform in silico
docking modeling to find drugs to be repurposed as effective inhibitors for SARS-CoV-2. Several antiviral medications:
Zanamivir, Indinavir, Saquinavir, and Remdesivir are found as potential hits on the SARS CoV-2 main proteinase. Another
study which focused on targeting the main protease was reported by Joshi et al. [100]. They performed screening of
7100 molecules including active ingredients present in the Ayurvedic antitussive medicines, anti-viral phytochemicals
and synthetic antivirals against SARS-CoV-2 main protease. Accordingly, they identified several natural molecules like
d-viniferin, myricitrin, taiwanhomoflavone A, lactucopicrin 15-oxalate, nympholide A, afzelin, biorobin, hesperidin and
phyllaemblicin B that strongly binds to SARS-CoV-2 main protease.

Unveiling the inhibition mechanism of mpro. In an analysis of 92 crystal structures of complexes between the protease
of SARS CoV-2 and inhibitors, Nguyen et al. [101] have identified 13 different binding sites in this protein. However,
the binding pocket, which is around the catalytic site is the most populated one by inhibitors. That is, about 74% of the
complexes between inhibitors and Mpro display the inhibitor located at this binding pocket. There is no other binding
site which is occupied by more than 6%, and most of them are occupied by only one of the 92 inhibitors considered. The
authors identified some important characteristics of the main binding pocket. For instance, Gly143 residue in Mpro is the
most attractive site to form hydrogen bonds, followed by Cys145, Glu166, and His163, all in the main binding pocket. There
are 45 out of 92 targeted covalent bonding inhibitors. The analysis of these 92 protein-inhibitor complexes was carried out
using a reduced representation protocol based on algebraic topology. This approach produces a dramatic simplification of
the geometric complexity of ligand–protein complexes by representing the systems as simplicial complexes. The concepts
involved in this approach are the following [102–105]:

Simplex σq. A q-simplex is the convex hull of q+1 affinely independent points in Rn. The 0, 1, 2, 3-simplex corresponds
to single vertex, edge, triangle, and tetrahedron, respectively.

Simplicial complex, K . A set of simplices satisfying that every face of a simplex σq ∈ K is also part of complex K , and
the nonempty intersection of any two simplices in K is the common face of both.

Persistent homology. The p-persistent qth homology group of Kt is

Hp
q (Kt) := Zq (Kt) /

(
Bq

(
Kt+p

)
∩ Zq (Kt)

)
, (3.2)

where ∅ = K0 ⊆ K1 ⊆ K2 · · · ⊆ Km = K is a filtration of the simplicial complex K , Zq (K ) is the q-cycle group of K defined
by Zq (K ) = ker

(
∂q

)
=

{
c ∈ Cq (K )

⏐⏐∂qc = ∅
}
and Bq (K ) is the q-boundary group of K defined by Bq (K ) = im

(
∂q+1

)
={

∂q+1c
⏐⏐c ∈ Cq+1 (K )

}
. The rank of Hp

q (Kt) counts the number of q-dimensional holes in Kt that remain in Kt+p,which is
known as the p-persistent qth Betti number (see [106] for a review). An illustration of the process for a protein is provided
in Fig. 3.3 taken from Cang and Wei [107].

In another work, Estrada [108] compared the 3D structure of the main protease of SARS CoV-2 with that of SARS CoV-1.
In this case the author uses a reduced representation of the protein structures based on graph/network theory, which is
known as protein residue networks (PRN). A PRN (see [109] Chapter 14 for details) is built from the information reported
on the Protein Data Bank [87]. The nodes of the network represent the α-carbon of the amino acids. Then, a cutoff radius
rC is considered, which represents an upper limit for the separation between two residues in contact. The distance rij
between two residues i and j is measured by taking the distance between C α atoms of both residues. Then, when the
inter-residue distance is equal or less than rC both residues are considered to be interacting and they are connected in
the PRN. The adjacency matrix A of the PRN is then built with elements defined by

Aij =

{
H

(
rC − rij

)
i ̸= j,

0 i = j, (3.3)

here H (x) is the Heaviside function. An example for the Mpro of SARS CoV-2 is illustrated in Fig. 3.4.
Several 3D structures of the Mpro in their apo form, i.e., no inhibitor present, of SARS CoV-1 and of SARS CoV-2 were

ransformed into their PRNs. Several graph-theoretic invariants were compared for both kinds of proteases, finding that
hey differ in less than 2%. A couple of invariant describing the capacity of the protein to transmit perturbations at

7 https://www.ebi.ac.uk/chembl/.

https://www.ebi.ac.uk/chembl/


E. Estrada / Physics Reports 869 (2020) 1–51 29

w
n
o

T
a
s
p
s
f
o
l

Fig. 3.3. Illustration of protein–ligand binding induced topological fingerprints change as reported by Cang and Wei [107]. Figure provided by the
authors.

relatively short distances from the center of the perturbed residue shown differences of 20% between both proteases.
These results agree with previous findings that reported that the similarity between the amino acid sequences of both
proteases is 96%, and that the superposition of the 3D structures of them displays very little deviations.

However, a remarkable difference between both proteases was found when the transmission of perturbations at long-
range distances was considered. In this case, [108] used a graph-theoretic invariant which is able to account for the
transmission of perturbation at longer distances through the PRN. These descriptors are mathematically defined on the
basis of the following matrix function [110]:

Z :=

∞∑
k=0

Ak

k!!
=

1
2

[
√
2πerf

(
A

√
2

)
+ 2I

]
exp

(
A2

2

)
, (3.4)

here A is the adjacency matrix of the PRN, its kth powers count the number of walks of length k between pairs of (not
ecessarily different) nodes, and 1/k!! penalizes the walks of length k by k!! (double factorial). The main effect of the use
f this double factorial penalization instead of the simple factorial.
The SARS CoV-2 proteases are 1900% more sensible to transmit such perturbations than their analogues of SARS CoV-1.

his property reflects the improved capacity of the new protease of transmitting perturbations across its domains. The
uthor also found that the amino acids displaying such increased sensitivity to perturbations are around the binding
ite of the new protease and close to its catalytic site. Estrada [108] also analyzed a few structures of the SARS CoV-2
rotease bounded to inhibitors, two of them being the most potent ones reported so far. He found that this increased
ensitivity to perturbations observed in SARS CoV-2 Mpro is related to the effects of powerful protease inhibitors. In
act, the strongest inhibitors of the SARS CoV-2 main protease are those that produce the least change of this capacity
f transmitting perturbations across the protein. The effects of these three inhibitors on the descriptor accounting for
ong-range perturbations across the PRN are illustrated in Fig. 3.5 for the close neighborhood around the binding site of
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Fig. 3.4. Cartoon representation (left) of the Mpro of SARS CoV-2 (PDB ID: 6Y2E) and the corresponding protein residue network (right).

ARS CoV-2 main protease. This strategy developed by Estrada [108] based on PRN and network descriptors was recently
pplied by Chen et al. [111] to the analysis of seven existing antibodies for SARS-CoV-2 spike (S) protein with three-
imensional (3D) structures deposited in the PDB. Five antibody structures associated with SARS-CoV were evaluated for
heir potential in neutralizing SARS-CoV-2.

In order to explain the mechanism by which these perturbations are transmitted across the structure of the main
rotease, Abadias et al. [112] developed a fractional Susceptible–Infected (SI) model based on the assumption that there
re similarities between epidemic spreading and a diffusive process on a protein residue network to prove the capability
f propagating information in complex 3D protein structures [113]. The new fractional SI model on a network was defined
s:

Dαt
(
− log

(
1⃗ − I

))
(t) = βαAI (t) , (3.5)

ith initial condition I (0) = I0, and where β is the infection rate, A is the adjacency matrix, 1⃗ is an all-ones column
ector, and Dα

∗
is the Caputo fractional derivative defined as

Dα
∗
f (x) ≡

1
Γ (τ − α)

∫ t

0
(t − s)τ−α−1

(
d
ds

)τ
f (s) ds, (3.6)

here α > 0, and where τ = ⌈α⌉ is the smallest integer greater than or equal to α. The solution of this fractional SI
model is expressed, under given initial conditions, by Eα,1 (ζA), where ζ is a parameter that depends on the time and on
β , and Eα,1 (ζA) is the Mittag-Leffler matrix function of ζA,

Eα,1 (ζA) :=

∞∑
k=0

(ζA)k

Γ (αk + 1)
, (3.7)

where Γ (·) is the gamma function. According to their results, when α = 0.5 but not when α = 1, some significant
and physically sounded trends are observed. First, the most powerful inhibitor increases by 71% the transmissibility of
perturbations through the main protease after its binding. It is followed by the second most powerful inhibitor, which
increases modestly the transmissibility of perturbations by 13%. However, the weakest inhibitor does not increase, but
decreases, the transmissibility of perturbations across the protein. In addition the average length of the shortest paths
connecting the pairs of residues with the largest increase in the transmissibility of effects follows the same trend as the
inhibitory potency. The most potent inhibitor perturbs an average of 9 residues per perturbation path. The second most
powerful inhibitor perturbs an average of 8 residues per shortest paths, and the weakest inhibitor perturbs only 6.

3.2.2. Inhibitors of 2’-O-ribose methyltransferase
Another important target against SARS CoV-2 is 2’-O-ribose methyltransferase (2’-O-MTase), nsp16, which plays an

important role in viral replication and prevents recognition by the host innate immune system. The structure of nsp16
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Fig. 3.5. Illustration of the 22 amino acids with the largest values of the long-range subgraph centrality in 6M0K (a), 6LZE (b) and 6Y2G (c). The
residues are connected if they are at no more than 7.0 Å. The color bar and the radius of the nodes indicates the values of Zii normalized to the
argest value in the corresponding protein.

n complex with nsp10 and S-adenosyl-L-methionine (SAM) was solved by X-rays crystallography (PDB ID: 6W4H) as
llustrated in Fig. 3.6 [114]. SAM is used by nsp16 as the methyl group donor and the catalytic KDKE region (K46, D130,
170, and E203 in SARS-CoV-2) is well conserved. Indeed, previous studies in SARS-CoV-1 demonstrated that the 2’-O-
Tase activity is completely removed by single mutation of any residue in this region. Therefore, this binding pocket is
potentially interesting one for inhibiting the activity of this protein and so of the SARS CoV-2.
Jiang et al. [115] analyzed the druggability of all binding sites in the structure of nsp16 using the PDB structure

W4H described before. According to geometrical and physicochemical properties of potential binding sites in this
rotein, the SAM pocket was reported to have the highest drug score. Then, they interrogated, using AutoDock Vina,8 the
atabase Drugslib9 which contains 7173 stereoisomers corresponding to 4574 ‘approved’ drugs. They found the following

8 http://vina.scripps.edu/.
9 http://www.druglib.com/.

http://vina.scripps.edu/
http://www.druglib.com/
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Fig. 3.6. 3D structure of the complex between nsp10 and S-adenosyl-L-methionine (SAM) (PDB ID: 6W4H).

candidates for dug repurposing: MK3207 (CGRP receptor antagonist), Rimegepant (CGRP receptor antagonist), Entrectinib
(anti-cancer), Osi-027 (dual inhibitor of mTORC1 and mTORC2), Bolazine (synthetic androgen/anabolic steroid), R428
(potent and selective inhibitor of Axl), hesperidin (flavonone glycoside found in citrus fruits), losulazine (antihypertensive),
rebastinib (inhibitor of the TIE2 immunokinase), and Cep-32496 (inhibitor of BRAF). Jiang et al. [115] also explored
molecules structurally similar to SAM and found that Gs-9667, trabodenoson, binodenoson, sonedenoson, regadenoson,
metrifudil, and selodenoson are potential inhibitors of nsp16.

Other studies [116,117] have used homology modeling to construct the structure of SARS CoV-2 nsp16 protein based
on structures previously reported for the same protein in SARS CoV-1. Both studies used virtual screening by molecular
docking into the SAM binding site of nsp16. In the first of them Sharma et al. [116]) report 22 drugs that accommodate
into the binding site, which includes alkaloids, antivirals, cardiac glycosides, anticancer, steroids and other drugs. The two
antiviral agents reported to binding to nsp16 are Saquinavir and Indinavir, which are both inhibitors of HIV protease.
In the second study by Khan et al. [117] the authors interrogated an in-house library of 123 antiviral drugs. They also
considered the inhibition of the main protease of SARS CoV-2. Then, they reported two known antiviral drugs as candidates
for repurposing: Dolutegravir and Bictegravir. Both drugs are known as anti-HIV agents which inhibit the HIV replicase.

3.2.3. Inhibitors of spike protein
The 3D structure of the S protein of SARS CoV-2 has been obtained by using cryo-electron microscopy at 3.5-

Å-resolution (PDB ID: 6VSB) [118]. It has been remarked that this trimeric structure may not be appropriate for
understanding the receptor binding mechanisms, because some structural information of important parts of the protein
are missing [119]. Then, the complete structure of the monomeric and trimeric S protein was constructed by homology
modeling using three SARS CoV-1 S proteins as template (PDB ID: 5X5B, 6ACG, 5I08) [119]. These structures were then
used by de Oliveira et al. [120] as the basis for a drug repurposing study using molecular docking. They used molecular
dynamics simulations of the trimeric structure of the S protein enclosed in a box of 147,803 water molecules. Then,
the most stable structures resulting from the molecular simulation experiments were used as the targets for docking
calculations using AutoDockTools10 software. Once the best – according to a scoring function – inhibitors were found,
the inhibitor-S-protein complexes were submitted again to molecular dynamics simulations to obtain their optimal
conformations. An interesting observation from the molecular dynamics studies is that the receptor-binding domain (RBD)
can flip from ‘‘up’’ to ‘‘down’’ conformation into direction of the S-protein center. The last conformation impedes the
interaction with the human receptor ACE2, which indicates that a transition ‘‘down’’ to ‘‘up’’ should take place before
binding to the surface of human cells. It also shows that RBD domain is very sensitive to the chemical environment,
temperature and solvent effects which may affect its conformation. Therefore, in finding drugs that bind this protein
it is important to consider such conformational sensibility of the S-protein. The authors carried out a drug repurposing
experiment and found, apart from a few traditional herbal isolates, 10 drugs of use in human or veterinary medicine
that inhibit the SARS CoV-2 S protein. They found, for instance, that ivermectin may bind in the RBD region of the S

10 http://autodock.scripps.edu/wiki/AutoDockTools.

http://autodock.scripps.edu/wiki/AutoDockTools
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Fig. 3.7. Complexes of vapreotide (a) and atazanavir (b) with SARS CoV-2 helicase protein built from molecular homology reproduced from Borgio
et al. [125].

protein, thus inhibiting the coupling of this protein with the human ACE2 receptor. This FDA-approved anti-parasitic has
been found experimentally to be an inhibitor of SARS-CoV-2 [121], with a single addition to Vero-hSLAM cells 2 h post
infection with SARS-CoV-2. It was able to produce ∼5000-fold reduction in viral RNA at 48 h. The other drugs found by
e Oliveira et al. [120] shows a large molecular weight, with an average of 745, such as quinupristin (antibiotic) with MW
f 1022 or acetyldigitoxin (cardiac glycoside) with MW 899.
In a different study Wei et al. [122] directly used the 3D structure of SARS CoV-2 protein S determined by cryo-

lectron microscopy (PDB ID: 6LZG) to detect binding sites using Discovery Studio 2016.11 They considered as a target the
pocket found near the protein–protein interface. They then interrogate molecules in the DrugBank12 which includes 2628
approved small drugs, which after removal of drugs with molecular weights larger than 500 kDa, including polypeptides,
consists of 2191 FDA-approved drugs. They also virtually screened drugs in an in-house database. Among the most
interesting findings of their work it is the report that the HIV antiretroviral drug, raltegravir, inhibits the protein S of
SARS CoV-2. Another candidate to drug repurposing identified was digotoxin, a cardiac glycoside, which is analogous of
acetyldigitoxin identified in the study of de Oliveira et al. [120], and somehow confirming the observation of these last
authors that because the S-protein is a glycoprotein it ‘‘has high affinity with oligosaccharides and various sugar chains’’.

Another approach was used by Villoutreix et al. [123] who focused on the furin cleavage site (see [124]) at the S1/S2
boundary of the S protein of SARS CoV-2. Interestingly, this site appears neither in SARS CoV-1 nor in other SARS-related
CoV, and it is believed [119] to be responsible for the efficient spread of SARS-CoV-2. They performed molecular docking
of 8,000 molecules acting in different therapeutic areas into the furin X-rays structure co-crystallized with a peptide-like
inhibitor (PDB ID: 5XH) or co-crystallized with a small chemical compound (PDB ID: 5MIM). They found that the drug
sulconazole, which is a broad-spectrum antifungal agent, binds to the active site of furin catalytic domain. Then, the
authors found experimentally that sulconazole inhibits the cleavage of the cell surface furin substrate MT1-MMP, which
contains two furin cleavage sites similar to those of the SARS-CoV-2 spike protein. This makes sulconazole an interesting
candidate for drug repurposing against SARS CoV-2.

3.2.4. Inhibitors of the nsp13 helicase or nsp12 polymerase
Helicase is a viral replication enzyme in coronavirus, which has the characteristics of unwinding DNA and RNA and

separating them into two single-stranded nucleic acids. Borgio et al. [125] consider nsp13 helicase as a potential target
for drug repurposing. They followed the classical scheme in which starting from the helicase amino acid sequence
the 3D structure of the protein is built by homology. Then, after validating the 3D structure, they retrieved drugs
from DrugBank and PubChem database13 and performed molecular docking and energy computation for the complexes
nhibitor-nsp13. They found that the analgesic, which is used in treating AIDS-related diarrhea, vapreotide was the best
andidate for binding into the nsp13 helicase. It is followed by atazanavir (HIV protease inhibitor), and hydroxychloroquine
antimalarial), but also accompanied by a few antiviral drugs, such as lopinavir, nelfinavir, saquinavir, indinavir, ritonavir,
mong others. Of the 26 best fitted drugs, 19 are in use against HIV, which points out directly to a strategy for drug
epurposing of anti-HIV drugs against SARS CoV-2 helicase. Notice that several of these drugs bind into different binding
ockets of the helicase, which gives more choices for the design of molecular dissimilar compounds (see Fig. 3.7).
On the other hand, the polymerase nsp12 forms a complex with nsp7 and nsp8 which is essential for viral replication

nd transcription (see [126]), and it is regarded as a potential target to fight against SARS CoV-2. The structure of this

11 https://www.3dsbiovia.com/products/collaborative-science/biovia-discovery-studio/.
12 https://www.drugbank.ca/.
13 https://pubchem.ncbi.nlm.nih.gov/.

https://www.3dsbiovia.com/products/collaborative-science/biovia-discovery-studio/
https://www.drugbank.ca/
https://pubchem.ncbi.nlm.nih.gov/
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omplex with the inhibitor drug remdesivir is illustrated in Fig. 3.2(d). However, before the structure of this complex
as published in the PDB, Ruan et al. [127] constructed it by homology modeling based on the fact that the amino
cid sequence alignment of nsp12 of SARS-CoV-2 and that of SARS CoV-1 share 96.35% similarity. Then, they used the
tructure of the complex in SARS CoV-1 (PDB ID: 6NUR) as a template. They performed molecular docking at the nsp12–
sp7 and nsp12–nsp8 interfaces, respectively. During docking, nsp7 (or nsp8) was removed from the complex and only
sp12 was left as the receptor. They interrogated 7496 drugs against both potential receptors. The authors found seven
rugs: Saquinavir, Tipranavir, Lonafarnib, Tegobuvir, Olysio, Filibuvir and Cepharanthine as potential hits to inhibit the
olymerase of SARS CoV-2. All these compounds are antiviral drugs, except the last one which is an anti-inflammatory
nd antineoplastic compound. Saquinavir, tipranavir, lonafarbib and tegoburir were found to bind at the interface between
sp12 and nsp7, while the other drugs were found at a site between nsp12 and nsp8. Notice that in the crystal structure
f remdesivir with the nsp12–nsp8–nsp7 complex (see Fig. 3.2(d)) the drug is not bounded at the interface between two
roteins but in the core of nsp12, close to the site in which the protein interacts with RNA. This lack of coincidence is a
onsequence of the fact that Ruan et al. [127] constrained the search of the binding site only to the intersection between
he pairs of proteins. A study revealing the capacity of molecular docking to detect precisely the binding sites of drugs
n the nsp12 polymerase was conducted by Mirza and Froeyen [128], who also built its structure by homology with that
f SARS CoV-1. This study was not directed to the identification of drugs for repurposing but mainly to lead discovery.
hat is important from the current discussion is that the authors found that the binding site for these lead compounds

nclude the residues: Arg553, Arg555, Asp618, Asp623, Arg624, Ser682, Ser759, Asp760 an Lys798. In the crystal structure
f remdesivir bounded with the complex nsp12–nsp8–nsp7, the drug is bounded to the residues: Arg553, Arg555, Cys622,
sp623, Ser682, Thr687, Asn691, and Asp760, which means that they coincide with the predicted ones.

.2.5. Inhibitors of other target proteins
The 3D structure of SARS CoV-2 papain-like protease was built by Arya et al. [129] using homology modeling and

sed to interrogate a total of 2525 FDA approved drugs from the DrugBank database or the Zinc15 library. They found
hat the binding site containing the S3/S4 pockets is more spacious than the one containing the catalytic residues, and
t was used for the docking modeling of the drugs. The S3/S4 pocket is formed by residues Asp164, Val165, Arg166,
lu167, Met 208, Ala246, Pro247, Pro248, Tyr 264, Gly266, Asn267, Tyr 268, Gln269, Cys217, Gly271, Tyr273, Thr301
nd Asp302. The authors reported several drugs that inhibit the papain-like protease of SARS CoV-2, such as: biltricide
anthelmintic), cinacalcet (calcimimetic), procainamide (antiarrhythmic), terbinafine (antifungal), pethidine (narcotic
nalgesic), labetalol (to treat hypertension), tetrahydrozoline (over the counter eye drops and nasal spray), ticlopidine
inhibitor of platelet aggregation), ethoheptazine (opioid analgesic), and levamisole (antihelminthic), among others. They
ound that chloroquine (antimalarial) shows inhibition of the papain-like protease, but its ligand efficiency was low (zero
n a scale from 0 to 2).
In a different strategy to the previously discussed here, in which the authors mainly focus on one protein target of

ARS CoV-2, Wu et al. [130] considered a systematic homology modeling of the structures of 19 SARS CoV-2 proteins.
hen, they performed virtual ligand screening of compound libraries like the ZINC drug database. They then reported
ists of drugs acting on: (i) papain-like proteinase; (ii) 3C-like main protease; (iii) RNA-dependent RNA polymerase;
nd (iv) helicase. Among the drugs reported we can find: (i) Ribavirin, Valganciclovir, β-Thymidine; (ii) Lymecycline,

Chlorhexidine, Alfuzosin; (iii) Valganciclovir, Chlorhexidine, Ceftibuten. Beck et al. [131] used a similar strategy to identify
antiviral drugs that can be repurposed against SARS-CoV-2. They constructed the structures of 3C-like proteinase, RNA-
dependent RNA polymerase, helicase, 30-to −50 exonuclease, endoRNAse, and 20-O-ribose methyltransferase. In general,
hey showed that atazanavir (anti-HIV) displayed the best results, with a high inhibitory potency against the SARS-
oV-2 3C-like proteinase. It was followed by remdesivir, efavirenz, ritonavir, and dolutegravir. Interestingly, lopinavir,
itonavir, and darunavir which are designed to target viral proteinases were also found to bind to the replication complex
omponents of SARS-CoV-2.

.3. Signature matching, genome-wide association, pathways and network mapping

Signature-matching strategies for drug repurposing consist in comparing the unique characteristics or ‘signature’ –
ranscriptomic, proteomic or metabolomic data; chemical structures; or adverse event profiles – of a drug candidate with
hose of known drugs, diseases or clinical phenotypes. One of the strategies used here is the ‘guilt-by-association’ one
132,133], in which if two diseases share some similar therapies, then other drugs that are currently used for only one
f the two may also be therapeutic for the other. This can be implemented in a network-based framework as follows.
irst, create a bipartite network consisting of drugs, e.g., FDA-approved drugs, and diseases. The drugs and diseases are
onnected if the first is used for treating the second. Now, we can project this bipartite network into the disease–disease
pace, creating a weighted graph of diseases, where two diseases are connected by a weighted edge representing the
umber of drugs used for their treatment. Novel drug uses can then be suggested based on shared treatment profiles
rom any disease pairs. The highest the weight between two diseases the larger the probability of repurposing drugs
sed for one of them to treat the other disease [132]. In another approach, repositioning can be proposed on the basis
f shared transcriptomic signatures between two drugs. In this case the two drugs may share a therapeutic application
ndependently of their structural similarity/dissimilarity. Another signature matching approach is based on studying the
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chemical similarities between drugs and assuming that two chemically similar molecules can share the same biological
target. Therefore, this approach captures ligand-based similarities among what would otherwise be considered disparate
proteins.

A genome-wide association study aims to identify genetic variants associated with common diseases, such that new
insights about the biology of the disease can be obtained which may help in finding new targets from which drugs can
be repurposed. In a similar way, large-scale identification of common pathways between different diseases or viruses
can be identified [134]. Then, it is possible to identify drugs targets through database and literature searches. Network
techniques can be used to build drug or disease networks based on gene expression patterns, disease pathology, protein
interactions or genome-wide association studies.

In an outstanding effort, Gordon et al. [84] performed a chemo-proteomic exhaustive analysis of the protein–protein
interaction (PPI) network of SARS CoV-2 and humans. These authors identified 332 high-confidence SARS CoV-2-human
PPIs. Then, they continue their analysis by searching for ligands that may disrupt SARS CoV-2-human PPI. They considered
the ‘‘importance’’ of a ligand by (i) the statistical significance of the interaction between the human and viral proteins,
(ii) the status of the drug (approved, investigational new drug, preclinical), (iii) drug selectivity, and (iv) drug availability.
They used chemoinformatic as well as target- and pathway-specific searches of drugs inhibiting any of the human proteins
in the SARS CoV-2-human interactome. These searches yielded: 29 approved drugs, 12 investigational new drugs, and 28
preclinical candidates. In total 63 out of the 332 potential targets have molecules that modulate them as can be seen in
Fig. 3.8.

In order to complete the investigational cycle of drug repurposing to find agents against SARS CoV-2, Gordon et al. [84]
implemented a medium-throughput experimental screening protocol to test some of the candidates found in the chemo-
proteomic analysis. In total they tested 47 out of the 69 compounds previously identified, plus a few others identified
by other approaches. According to their experimental analysis, there are two classes of molecules in reducing viral
infectivity. They are, the inhibitors of protein biogenesis, such as zotatifin and ternatin-4 (both are selective inhibitors of
the eukaryotic translation initiation factor 4A), and those which inhibits Sigma1 and Sigma2 receptors, such as haloperidol
(antipsychotic), PB28 (Sigma 1/2 modulator) and hydroxychloroquine (antimalarial).

A different strategy, although based on the same data, was followed by Gysi et al. [135]. They focused on the observation
that most approved drugs do not target directly disease proteins (DP), but they bind proteins which are in the vicinity of
DP, in a network theoretic sense. Therefore, their goal was to identify drugs that have the potential to ‘perturb’ the network
vicinity of the virus disease module independently on whether they target or not a protein to which the virus binds. They
defined 12 different protocols (called pipelines in the paper) to quantify the proximity or similarity between a drug–target
and a virus target, either in a PPI network or in embedding spaces resulting from the transformation of the own PPI
network. The last set of approaches which uses techniques of Artificial Intelligence (AI) based on graph convolutional
networks [136], resulted in the best results in the calibration tests performed by the authors. Such calibration tests
were carried out by training the different approaches to detect those 67 drugs already in clinical trials against COVID-
19. The results of this combined protocols generate 12 different rankings of drugs according to the network structural
criteria encoded in each of them. Consequently, Gysi et al. [135] disentangled these rankings by using a rank aggregation
algorithm based on Kemeny consensus. As a result of these experiments the authors arrived at a list of 86 drugs which
are candidates for repurposing against SARS CoV-2. The candidate that top ranked in this list is ritonavir, an antiretroviral
used against HIV, followed by isoniazid (anti-tuberculosis), troleandomycin (antibiotic), cilostazol (cardiovascular) and
chloroquine (anti-malarial).

Another example of a network-based drug repurposing study was published by Zhou et al. [137] before the structure of
the PPI network of Human-SARS CoV-2 had been determined experimentally. The authors started from the phylogenetic
analyses of 15 human coronaviruses (HCoV) whole genomes and found that SARS-CoV-2 shares the highest nucleotide
sequence identity with SARS-CoV-1 (79.7%). Specifically, they found that the envelope and nucleocapsid proteins are
two evolutionarily conserved regions. Then, the authors searched for HCoV-host interactome networks and found 119
host proteins associated with CoVs. These host proteins are either the direct target of HCoV proteins or are involved
in important pathways of the coronaviruses infection. Using these identified proteins Zhou et al. [137] reported 47
human proteins that can be targeted by at least one approved or experimental drug under clinical trials. The most
targettable proteins identified were: GSK3B, DPP4, SMAD3, PARP1, and IKBKB. They then constructed a drug–target
network by assembling target information for more than 2000 FDA-approved or experimental drugs and computationally
identified 135 drugs that were associated with the HCoV-host interactome. They finally identified 16 repurposable drugs,
which include: mesalazine (against inflammatory bowel disease), toremifene (anticancer), eplerenone (steroid), paroxetine
(antidepressant), sirolimus (immunosuppressant), dactinomycin (anticancer), irbesartan (cardiovascular agent), mercap-
topurine (anticancer), melatonin (sleep hormone), and others. A problem with this work is that the proteins reported here
as the most targettable ones, and many others, are not among the ones found experimentally by Gordon et al. [84] as
the ones interacting with SARS CoV-2 proteins. Also, those most important proteins found by Gordon et al. [84] are not
among the ones studied by Zhou et al. [137]. Therefore, the necessity for reviewing the existing techniques for identifying
potential protein targets from computational methods is evident for future studies against emergent pathogens.
A resume of all the methods described in this review for drug repurposing is given in Table 3.
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Fig. 3.8. Illustration of the PPIs of SARS-CoV-2 baits with approved drugs (green), clinical candidates (yellow), and preclinical candidates (purple)
with experimental activities against the host proteins (white background) or previously known host factors (gray background). Figure provided by
the authors.
Source: Reproduced from Gordon et al. [84] with permission.

4. Vaccines

A biological preparation which provides active acquired immunity to a particular infectious disease is known as a
vaccine. The goal of a vaccine is to stimulate the immune system of the host to recognize the infectious agent and destroy
it. It also should recognize and destroy any of the microorganisms associated with that infectious agent that it may
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Table 3
Resume of the different methods described here for drug repurposing.
Authors Target Method Examples of drugs identified Ref.

Jin et al. Mpro virtual screening cinanserin [93]
Khan et al. Mpro molecular docking + molecular dynamics remdesivir, saquinavir, darunavir [97]
Tsuji Mpro virtual screening sulfamethizole, sulfathiazole, kanamycin,

droperidol
[98]

Hall & Ji Mpro in silico docking zanamivir, indinavir, saquinavir, remdesivir [99]
Joshi et al. Mpro virtual screening d-viniferin, myricitrin, afzelin, hesperidin [100]
Jiang et al. nsp16 molecular docking MK3207, rimegepant, entrectinib, bolazine,

hesperidin
[115]

Sharma et al. nsp16 homology modeling + virtual screening saquinavir, indinavir [116]
Khan et al. nsp16 homology modeling + virtual screening dolutegravir, bictegravir [117]
de Oliveira et al. S molecular docking ivermectine, quinupristin, acetyldigitoxin [120]
Wei et al. S virtual screening raltegravir, digotoxin [122]
Villoutreix et al. S molecular docking sulconazole [123]
Borgio et al. nsp13 homology modeling + virtual screening vapreotide, atazanavir, hydroxychloroquine,

lopinavir, saquinavir, indinavir, atazanavir
[125]

Hillen et al. nsp12 molecular docking saquinavir, tipranavir, lonafarnib, tegobuvir [126]
Arya et al. nsp3 homology modeling + virtual screening biltricide, cinacalcet, procainamide,

terbinafine
[129]

Wu et al. several homology modeling + virtual screening ribavirin, valganciclovir, lymecycline,
chlorhexidine, ceftibuten

[130]

Beck et al. several homology modeling + virtual screening atazanavir, remdesivir, efavirenz, ritonavir [131]
Gordon et al. several PPI network-based protein–drug

association
zotatifin, ternatin-4, haloperidol, PB28,
hydroxychloroquine

[84]

Gysi et al. several PPI network-based protein-drug
association + AI

isoniazid, troleandomicyn, cilostazol,
chloroquine

[135]

Zhou et al. several predicted PPI network-based
protein-drug association

mesalazine, toremifene, eplerenone,
paroxetine

[137]

Fig. 4.1. Global scheme of vaccine development pipeline.

encounter in the future. A vaccine that prevents or ameliorates the effects of a future infection is known as prophylactic,
while one that fights against a disease already in course is known as therapeutic [138]. To start we should mention here
how the process for developing a new vaccine takes place. In Fig. 4.1 we illustrate the general process of discovering a
vaccine showing the narrow funnel conducting from about 100 candidates to one single vaccine in a period of 10–12 years
and a cost of $500 million.14 Although other authors [138] give estimations of up to 16 years and up to one billion USD.

14 The Figure is adapted from https://www.weforum.org/agenda/2020/06/vaccine-development-barriers-coronavirus/.

https://www.weforum.org/agenda/2020/06/vaccine-development-barriers-coronavirus/
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Fig. 4.2. Proposed scheme for anti-SARS CoV-2 vaccine development.

The specific timing and cost of a vaccine depend on the kind of vaccine we are talking about, because in general they
re divided into 3 generations based on the process involved. Here, we will briefly describe the existing generations of
accines currently in use [138].

(1) First-generation vaccines. Consist of the classic strategy of using either the live attenuated virus or the complete
inactive virus. This strategy has the advantage of generating inherent immunogenicity and stimulating Toll-like
receptors. However, they require extensive testing to confirm their safety in humans. In the case of coronavirus an
additional problem is that an increase in infectivity has been observed after immunization.

(2) Second-generation vaccines. Consist of the use of subunits of the pathogen, particularly a complete protein on the
surface of the pathogen that triggers the immune response against the pathogen. They include (i) subunit vaccines,
(ii) conjugated vaccines, and (iii) recombinant vaccines. In this case, the spike proteins are excellent candidates in
the case of SARS CoV. For example, the receptor binding domain of the SARS CoV-1 and SARS CoV-2 spike proteins
share 80% similarities in their amino acids and bind to the same receptor, which are potentially useful characteristics
for developing a vaccine based on that protein.

(3) Third generation of vaccines. Consist of nucleic acids from the pathogen. These vaccines build on the concept of
DNA immunization that has been used successfully for the development of influenza vaccines. They exploit the
immunogenic potential of plasmid containing a gene which encodes the antigen. Therefore they are also known as
genetic vaccines.

n the emergency situation produced by the outbreak of COVID-19 a drastic modification of the global pipeline for vaccine
evelopment has been proposed [139–143]. It is resumed in Fig. 4.2 where the most relevant features are the reduction
f the total timing to 12–18 months mainly by reducing the time used for the discovery of candidates, mainly due to
he previous investigations done for SARS CoV-1 and MERS [144], the reduction of the time or even elimination of the
re-clinical essays, due to the same previous reason, and the merging of phases II and III of clinical essays. However, the
ost will significantly rise to more than $3 billion. It should be remarked that for the case of COVID-19 we play with
ome advantages due to the fact that previous researches performed for SARS CoV-1 can be beneficial for the current
evelopment [144]. Researchers began the development of several SARS CoV-1 vaccines which were tested in animal
odels. These included recombinant vaccines based on the CoV spike proteins. Other vaccines were based on complete
r attenuated viruses, and vector vaccines were also developed. Although most of these vaccines protected animals from
he challenge of SARS-CoV-1, most of them did not induce sterilizing immunity. Only a small number of these vaccines
eached Phase I of the clinical trials and the main reason was that research and development funding was cut due to the
radication of the virus in the human population. What experiences can be drawn from this episode? (1) that some of the
accines in development against SARS-CoV-1 appeared safe and induced neutralizing antibodies; (2) that some monoclonal
ntibodies isolated from SARS-CoV-1 may also react against SARS-CoV-2, although since vaccines have not been developed
hey are not currently available; (3) that in some cases total virus-based vaccination resulted in complications, including
ung damage, eosinophil infiltration, and liver damage from model animals; (4) that the time for the development of a

accine should be dramatically shortened.



E. Estrada / Physics Reports 869 (2020) 1–51 39

a
t
s

4

r
o
d
s
i
t

n
s
f
(
o
m
i
l
T
l
f
o
o
a

v
s
a
o
b
b
p

4

4

p
b

Fig. 4.3. The main steps of the rational vaccine design pipeline adapted from a diagram in [146] and made using Motifolio.

The use of this strategy has yielded several vaccines against SARS CoV-2 which are now in clinical trials (on June 29th
2020) and several others in preclinical testing.15 In the case of SARS-CoV-2 vaccines, it must be taken into account that
highly vulnerable segment of the population is over 60 years of age. Unfortunately, this segment of the population

ypically responds somewhat worse to vaccination due to immunosenescence-aging of the immune system. Therefore, a
trategy in the case of SARS CoV-2 would be the use of a fourth generation of vaccines: epitope vaccines.

.1. Epitope vaccines

Epitopes are short sequences of amino acids belonging to a protein that can induce a more direct and powerful immune
esponse than the one induced by the complete protein. Put simply, instead of using the whole virus (first generation
f vaccines) or a complete virus protein (second generation of vaccines), let us use the part of this protein that binds
irectly to the antibody [145]. The advantages of epitope vaccines would be that: (i) they can be produced quickly and
tored safely using available technology, (ii) they do not pose a risk of reversion to virulence since they do not contain
nfective material, and (iii) they can choose epitopes that take into account both the pathogenic and genetic variability of
he population.

For the development of an epitope vaccine it is first necessary to discover the candidate epitopes, then select the
ecessary ones for vaccination and finally assemble them in the vaccine (see Fig. 4.3). The assembly stage is very important
ince the vaccines can consist of an epitope soup, called cocktail epitope vaccines, or they can be assembled in a linear
ashion, called string-of-beds vaccines, or overlapping the epitopes with each other to give place to a mosaic vaccines
see Fig. 4.3). The problem of designing epitope vaccines can then be formulated mathematically as a combinatorial
ptimization problem (see further). An amino acid sequence is selected that must contain several epitopes and that
ust maximize the efficiency of antibodies against the virus. Since some epitopes appear more frequently than others

n natural viral populations, there is a tendency to maximize the coverage of epitopes that appear in the vaccine by
imiting their length. This should ensure that the most common epitopes are most likely to be included in the vaccine.
o this end, various computational, statistical, and mathematical techniques have been used, such as genetic algorithms,
inear programming, probabilistic algorithms, consensus methods, and, more recently, a unified epitope vaccine design
ormalism that simultaneously attacks all three stages has been developed. This method combines the use of graphs
r weighted directed networks to represent the epitopes and their different forms of assembly with combinatorial
ptimization techniques that seek to maximize the immune response of the vaccine, imposing limits on the length of the
rtificial antigen built for the vaccine by the overlap of epitopes found in the virus (see further for details and references).
In 2014 a group of scientists from different institutions designed a vaccine using respiratory syncytial virus epitopes

ia computational protein design techniques [147]. They demonstrated that small conformationally and thermally stable
caffold proteins can be generated to emulate the structure of viral epitopes very well and induce potent virus neutralizing
ntibodies. The work by Correia et al. [147] is considered as a proof of principles for the design of vaccines based
n epitopes. In general, the computational design of vaccines is framed within "immunoinformatics" as a branch of
ioinformatics [148]. It includes the development of mathematical and computer techniques for the design of structure-
ased immunogens, the analysis of antibodies, the creation and management of databases and tools on cellular epitopes,
rediction of T-cell epitopes, allergy, immunological genes, vaccinology in silico, among others.

.2. Immunoinformatics and vaccinology for SARS CoV-2

.2.1. Cell entry mechanism of SARS CoV-2
We have previously mentioned that the entry of SARS CoV-2 into human cells is facilitated by the spike (S)

rotein [149–151]. It is a glycoprotein consisting of 1282 residues, and divided into two regions known as S1 or residue
inding domain (RBD) and region S2 [149], [152]. The RBD is formed by amino acids 1–685 (see Fig. 4.4 zoomed right

15 The vaccines in clinical trial can be searched at the webpage of ClinicalTrials.org.
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Fig. 4.4. Composition of the structures of SARS CoV-2 S protein, ACE2 receptor and neutral amino acid transporter B0AT1 forming the entry complex
of the virus into the human cell.

part) and it is responsible of the binding to the cellular receptor, Angiotensin-converting enzyme 2 (ACE2). In addition,
entry requires S protein priming by cellular proteases, which entails S protein cleavage at the S1/S2 site. The S2 region
is formed by residues 686–1273, and mediates membrane fusion, a process previously explained in this review. In the
process of protein priming the S protein requires TMPRSS2 (transmembrane serine protease 2) [153]. The 3D structure
of SARS CoV-2 S trimer in the prefusion conformation was determined at 3.5-angstrom-resolution by using cryo-electron
microscopy by Wrapp et al. [118]. The authors found that the RBD domain can be in two states: ‘‘up’’ or ‘‘down’’, but it
predominantly is in the ‘‘up’’ conformation. In Fig. 4.4 (left part) we illustrate the structure of the SARS CoV-2 S trimer
with the RBD in up conformation (PDB ID: 6VSB). They also provided an important differentiation of the S protein of
SARS CoV-2 with that of SARS CoV-1. Namely, that (i) the new spike protein binds ACE2 with higher affinity than that of
SARS CoV-1, and (ii) SARS CoV-1 RBD-specific monoclonal antibodies do not have appreciable binding to SARS CoV-2 S
protein, which means that antibody cross-reactivity could be limited between the two RBDs. On the other hand, Yan et al.
[154] determined the 3D structure of the human ACE2 receptor in the presence of the neutral amino acid transporter
B0AT1. They considered the complex with or without the RBD of SARS-CoV-2 S protein. In Fig. 4.4 (left part) we show this
complex with the RBD region (PDB ID: 6M17), which we have manually assembled with the S protein structure of SARS
CoV-2 to present the whole complex of the interaction between the virus S protein and the human receptor at the cell
surface. The zoomed interaction (Fig. 4.4, right part) corresponds to the crystal structure determined by Wang et al. [152]
(PDB ID: 6LZG).

The previously described structural results are the basis for the search of epitopes in the S protein. This was
demonstrated experimentally by Poh et al. [155] who used pools of overlapping linear B-cell peptides, and reported
two IgG immunodominant regions on SARS CoV-2 S protein. These epitopes were recognized by sera from COVID-19
convalescent patients. Both epitopes are located at the surface of the S protein, one of them is located near the RBD and
is specific to SARS CoV-2, and the other, which is at the fusion peptide, is potentially useful as a pan-SARS target. In
another study, Barnes et al. [156] reported an epitope that blocks ACE2 receptor binding using a neutralizing monoclonal
Fab-spike complex. Yuan et al. [157] determined the crystal structure of a neutralizing antibody previously isolated from
a convalescent SARS patient. The antibody named CR3022 is in complex with the RBD of the S protein of SARS-CoV-2.
They found that CR3022 targets a highly conserved epitope that enables cross-reactive binding between SARS-CoV-2 and
SARS-CoV. In the next subsections we will describe some works reporting computational efforts to detect epitopes that
may help in the design of vaccines against SARS CoV-2.

4.2.2. Immune response against SARS CoV-2
Here we briefly explain the mechanisms of immune response at molecular and cellular levels against SARS CoV-2. As

we will see these are similar mechanisms to the ones generated by epitope vaccines. Therefore we use this subsection to
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Fig. 4.5. Molecular and cellular mechanism of immune responses induced against SARS CoV-2. Graphics prepared with Motifolio.

introduce a few concepts that will be used in the next subsections of this review. When SARS CoV-2 enters the human
cell, cytotoxic T lymphocytes (CTL), helper T-cell (Th) and B cells epitopes from some of its proteins can trigger an immune
response from the infected cell. First, CD8+ precursor CTL (CD8+ pCTL) recognizes the complex of CTL antigen peptides
bound to the major histocompatibility complex (MHC) class I molecules that are displayed by target cells through TCR.
CD8+ refers to cytotoxic T cells accompanied by a glycoprotein called CD8. The T-cell receptor (TCR) is a protein complex
found on the surface of T cells, or T lymphocytes, which is responsible for recognizing fragments of antigen as peptides
bounded to MHC molecules. This first step is illustrated in Fig. 4.5 (left part).

In the central part of Fig. 4.5 we illustrate how antigen presenting cells (APC) tackle the epitopes generated by SARS
CoV-2 and present the Th antigen peptides bound to MHC class II molecules to Th0 cells. The cells Th0 are differentiated
into Th1 and Th2, where the first secrete interleukines (IL-2, IL-12) an interferon (IFN- γ) and transforming growth factor
alpha (TGF- α) that stimulate CD8+ pCTL to generate effector CTL cells. This will kill the target cells as illustrated at the
bottom of the left part of Fig. 4.5. The cells Th2 (see right part of Fig. 4.5) recognize the Th epitope bound to MHC class II
molecules that are presented by B cells. After activation these cells secrete IL-4, IL-5, IL-6, IL-10 and TFG- β to stimulate
B-cell activation. B cells then proliferate and differentiate into plasma cells. The plasma cells secrete anti-SARS CoV-2
antibodies to kill the virus. Then, if a vaccine is created by containing CTL, Th and B cells epitopes of SARS CoV-2, the
effective response against the virus created by this multi-epitope vaccine is similar to the one described in Fig. 4.5 [158].

4.2.3. Computational search of epitopes for SARS CoV-2 vaccines
Although in the previous subsection we have reported cases in which one or two epitopes have been found at

the surface of S protein we should remember that a significant immune response in the body is rarely obtained by
a single epitope [159]. In most cases this immune response is obtained by induction of CD4+ T cells to assist B cell
expansion and differentiation, class switching, and maturation [160]. The use of computational techniques for helping in
the design of vaccines has been reviewed by Poland et al. [161] where the terms ‘‘reverse vaccionology’’, ‘‘vaccionomics’’,
‘‘systems vaccionology’’, ‘‘structural vaccinology’’ and ‘‘vaccine informatics’’, together with ‘‘adversomics’’ are surveyed.
More specific reviews for the use of computational tools for epitope vaccine design and evaluation have been published
by He and Zhu [162] and by Khalili et al. [163].

As a first example we describe here the work of Kalita et al. [164] who designed a multi-peptide subunit-based
epitope vaccine against COVID-19. Their recombinant vaccine consists of an adjuvant, cytotoxic T-lymphocyte (CTL), helper
T-lymphocyte (HTL), and B-cell epitopes joined by linkers, which, according to the predictions, must be (i) non-toxic,
(ii) non-allergenic, (iii) thermostable, and (iv) capable of eliciting a humoral and cell-mediated immune response. The
first modeling tool used by these authors, after having the sequences of all proteins of SARS CoV-2, was for predicting the
average antigenic propensity of each of these proteins. They used the antigenic peptides prediction tool,16 which predicts
those segments from within a protein sequence that are likely to be antigenic by eliciting an antibody response. It uses a
method based on a table that reflects the occurrence of amino acid residues in experimentally known segmental epitopes.
According to the search of Kalita et al. [164] the membrane glycoprotein, the S protein, and the nucleocapside protein

16 http://imed.med.ucm.es/Tools/antigenic.pl.

http://imed.med.ucm.es/Tools/antigenic.pl
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Fig. 4.6. Illustration of the key interactions obtained from the structure of TLR3 and vaccine complex, before (A) and after (B) molecular dynamics
simulation. TLR3 receptor is shown in green color, and the vaccine is shown in cyan color in both panels.
Source: The figure was provided by Kalita et al. [164] and reproduced with permission from Elsevier.

display the highest order of antigenicity among all proteins in SARS CoV-2. We mention in passing that the structure
of the nucleocapside protein has been recently determined by X-rays crystallography (PDB ID: 6M3M) [165]. Then, the
methods and computational tools given below were used for the three proteins selected for the study:

• Immune Epitope Database17: For predicting the helper T-lymphocyte (HTL) epitopes;
• IFN epitope server18: For detecting capability to induce Th1 type immune response accompanied by IFN-Υ produc-

tion;
• NetCTL1.2 server19: For predicting cytotoxic T-lymphocyte (CTL) epitopes;
• ABCPred server20: For identifying B-cell epitopes;
• ToxinPred module21: For predicting the toxic/non-toxic nature of all the epitopes.

ther computational tools can be found in Khalili et al. [163]. At this point the authors disposed of a series of (HTL specific,
-cell binding and CTL) epitopes from the three proteins considered. Therefore, they proceeded to construct the multi-
pitope vaccine by adding adjuvant (human β-defensin 1) and linkers to separate the epitopes in vivo. The properties of
he designed vaccine were then predicted by using the tools resumed below:

VaxiJen22: For predicting immunogenicity;
ANTIGENpro module of SCRATCH23; AllerTOP24; AlgPred Server25: For predicting allergenicity;
ProtParam26: For predicting physicochemical properties;
PSIPred 4.0 Protein Sequence Analysis Workbench27: For predicting secondary structure;
trRossetta28: For predicting tertiary structure;
PROCHEK v.3.529 and ProSA30: For model validation.
The modeling is finished by using molecular simulations of the 3D structure of the vaccine and of its receptor (TLR3)

iving rise to the complex illustrated in Fig. 4.6.
Similar approaches were followed by ul Qamar et al. [166] and Bhattacharya et al. [167] who designed multi-epitopes

accines against SARS CoV-2. The first considered seven antigenic proteins taken as targets, from which curiously the S
rotein was excluded due to low antigenicity, and selected several epitopes for building the vaccine. The second study,
owever, focuses only on the S protein from which the authors identified several B- and T-cell epitopes which then are
ssembled in a vaccine further optimized using molecular docking.

17 http://too73ls.iedb.org/mhcii/.
18 http://crdd.osdd.net/raghava/ifnepitope/.
19 http://www.cbs.dtu.dk/services/NetCTL/.
20 http://crdd.osdd.net/raghava/abcpred/.
21 http://crdd.osdd.net/raghava/toxinpred/multi_submit.php.
22 http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html.
23 http://scratch.proteomics.ics.uci.edu/.
24 http://www.ddg-pharmfac.net/AllerTOP/.
25 http://crdd.osdd.net/raghava/algpred/.
26 http://web.expasy.org/protparam/.
27 http://bioinf.cs.ucl.ac.uk/psipred/.
28 https://yanglab.nankai.edu.cn/trRosetta/.
29 https://servicesn.mbi.ucla.edu/PROCHECK.
30 https://prosa.services.came.sbg.ac.at/prosa.php.
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The identification of specific epitopes based on the computational analysis of SARS CoV-2 proteins has received more
attention. In one of these studies Grifoni et al. [168] used the Immune Epitope Database and Analysis Resource (IEDB)
mentioned before to identify epitopes in coronaviruses. Due to the high homology of SARS CoV-2 to the SARS-CoV-1 virus
and the availability of epitopes for SARS CoV-1 they used information about the last for identifying potential B and T
cell epitopes for SARS-CoV-2. Interestingly, they used independent identification of the same regions by two different
approaches and found that a few of the epitopes identified coincide, reflecting a high probability that these regions are
potential targets for immune recognition of SARS-CoV-2. It is important to mention that among the IEDB inventory of
epitopes for SARS CoV-1 proteins about 65% of B cell ones and 47% of T cell ones comes from the Spike protein. Then,
from the 10 dominant SARS CoV-2 B cell epitopes identified, 5 are from the S protein, 2 from the membrane protein and 3
from the nucleocapside one. In the case of SARS CoV-2 T cells they identified 45 epitopes, 23 of which are from S protein,
10 from the nucleocapside, 7 from Orf1ab, 3 from the membrane protein and 2 from Orf3a.

Zheng and Song [169] computed sequence-based antibody epitope scores in spike proteins of MERS-CoV, SARS-CoV, and
SARS-CoV-2. They found that the SARS-CoV-2 had significantly lower antibody epitope score compared with MERS-CoV
and significantly higher antibody epitope score compared with SARS-CoV-1 which indicates that the spike proteins have
significantly variable antigenicity. Their results show that although SARS CoV-1 and SARS CoV-2 have high homology it is
necessary to develop new antibodies and vaccines specific for SARS-CoV-2. They discovered novel and high-score antibody
epitopes for SARSCoV-2 S protein with enough potency and specificity as for developing anti-SARS CoV-2 vaccines.
Campbell et al. [170] computationally searched epitopes predicted to bind any class I HLA protein across the entire SARS-
CoV-2 proteome. They computed the predicted binding affinities between 9-mer peptides derived from the annotated
SARS-CoV-2 peptidome across 9,360 MHC class I HLA-A, -B, and -C alleles. This resulted in 6748 unique combinations of
peptides and HLA alleles with a predicted binding affinity of less than 500 nM. From this list 1103 were unique peptides
and 1022 were HLA alleles, spanning 11 annotated superfamilies. The complete dataset with their results is publicly
available.31 Finally, Kiyotani et al. [171] performed a comprehensive bioinformatic screening of potential epitopes from the
SARS-CoV-2 sequences for HLAs commonly present in the Japanese population. They first found 2013 and 1399 potential
epitopes with predicted high affinity to HLA classes I and II, respectively. These epitopes are located across the spike,
envelope, membrane, nucleocapsid and in six open reading frames proteins. From these epitopes the authors found that
781 HLA-class I and 418 HLA-class II have high homologies with SARS CoV-1. Their study was completed by identifying 2
HLA-class I epitopes covering 83.8% of the Japanese population which may be useful for designing widely-available vaccine
against SARS-CoV-2. In another study Prachar et al. [172] identified 174 SARS-CoV-2 epitopes with high prediction binding
scores, validated to bind stably to 11 HLA allotypes. Also, Ahmed et al. [173] reported a set of B cell and T cell epitopes
derived from the spike and nucleocapsid proteins. For the T cell epitopes, the authors performed a population coverage
analysis of the associated MHC alleles and proposed a set of epitopes that is estimated to provide broad coverage globally.

4.3. Mathematical modeling of epitope vaccines

The design of epitope vaccines consists of three main stages: (i) the discovery of potential epitopes; (ii) the selection
of a subset of epitopes to be included in the vaccine; and (iii) the assembly of epitopes into the vaccine. We have seen
in the previous subsections that there are several bioinformatic [148] tools to discover potential epitopes and to select a
reduced set of them meeting several criteria. In order to remark the importance of the last stage we should recall that
delivering all a mixture of separate epitopes does not induce immune response and it is not to be considered as a vaccine.
Therefore, the way in which the selected epitopes are assembled is vital for the efficiency of an epitope vaccine.

An apparently simple way of assembling the selected epitopes is by concatenating them in the form of a sequence
in the form of string-of-beds (see Fig. 4.3). A string-of-beds vaccine is then a long polypeptide whose efficacy depends
on its capacity of recovering the majority of epitopes to be recognized by human leukocyte antigen (HLA) molecules.
Consequently, the order in which these epitopes are arranged in the string matters as it has been shown by Cornet et al.
[174]. The recovery of epitopes can be improved by including spacers sequences between epitopes as it has been shown
in the previous subsection. However, as recognized by Schubert and Kohlbacher [175] there are a few problems that can
emerge, such as:

• unfavorable ordering of epitopes which may result in miscleaved peptides and ineffective vaccines;
• formation of neoepitopes, which can have detrimental effects. This situation can be aggravated by using longer

spacers;
• combinatorial explosion of the number of possible arrangements, which makes experimentally untreatable the

problem.

We should remember that the possible number of arrangements for N epitopes is N!. Thus, with only 10 epitopes we
already have 3,628,800 of combinations to try in the wet lab. The mathematical problem of optimizing the three kinds of
epitopes vaccines can be formulated as follows [146]:

• Epitope mixture vaccines: seeks to find a subset P of k epitopes that together have the highest chance of invoking
an effective immune response I(P);

31 gs://picicovid19- data-resources/mhci/peptide_predictions.
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• String-of-beads vaccines: seeks to find a polypeptide comprised of k concatenated epitopes that simultaneously
maximize the vaccine efficacy I(P) and the recovery likelihood of each epitope by the proteasome;

• Mosaic vaccines: seeks to constructs an artificial antigen P of fixed length h comprised of potentially overlapping
epitopes with maximal efficacy I(P).

he assembly as string-of-beds is possibly the most popular one and there are several approaches to optimize the
orresponding arrangement of strings. A well-known mathematical formalism for epitope selection and ordering was
roposed by Toussaint et al. [176]. They consider a process that balances the constraints on: (a) optimal choice of target
ntigens, (b) optimal choice of highly conserved epitopes, (c) maximum coverage of the target population, and (d) the
roper ordering of the epitopes in the final vaccine. Then, they defined the effectivity of an epitope with respect to a
et of MHC alleles as a weighted sum of the epitopes’ presentation probability scores, which are composed of cleavage
robability and MHC binding affinity. That is,

Effectivity (e, A) =

∑
Pmhc (a) pcl (e) b (e, a) , (4.1)

here e is the epitope of interest, A is the set of MHC alleles, Pmhc(a) is the probability of allele a in the target population,
cl (e) is the cleavage probability of epitope e, and b (e, a) is the binding affinity of epitope e to the gene product of
HC allele a. Then, the selection of the epitopes to form the vaccine is made by using an integer linear program (ILP)

o determine the optimal set of epitopes, based on three parameters: (i) the protein size of immune repertoire scores,
ii) epitope effectivities, and (iii) epitope conservation. Finally, the assembly is performed as follows. Let us consider the
pitopes as the nodes of a directed weighted graph where the edge (i, j) represents the number of unwanted junctional
eptides likely to be cleaved when i is the N-terminal neighbor of j or vice versa such that the more unwanted peptides,
he higher the weight. Let us introduce a dummy epitope corresponding to the N- and the C-terminus of the polypeptide.
hen an ILP was implemented to solve the traveling salesman problem32 on this graph.
The strategy followed by Schubert and Kohlbacher [175] is to design a string-of-beds such that it: (a) maximizes the

ecovery of the epitopes, while (b) minimizing the production of undesired neo-epitopes. They also created weighted
irected fully connected graphs where the negative cleavage scores represent the weights of the edges between epitopes
airs. Then, they used Toussaint et al. [176] approach based on traveling salesman problem on this graph also by adding
node that represents the N- and C-termini of the vaccine and connecting it with all other nodes with zero edge weights.
ne of the main additions of this work is to consider optimal spacers of length k connecting two epitopes. Therefore,
heir method yields string-of-bead vaccines with flexible spacer lengths. This was shown to increase the predicted epitope
ecovery rate 5 times, while reducing the immunogenicity from neo-epitopes by 44% compared to designs without spacers.

Another variation is presented by Epigraph,33 which is a developed algorithm enabling to maximize the potential
pitope coverage for a diverse pathogen population and so the design of single or multiantigen vaccines. The problem is
ormulated again on graphs [177], but this time the edges of the graphs represent the overlapping between two epitopes.
he candidate antigens are represented as walks34 that traverse this graph (notice that although they call it paths, they
llow for repetition of nodes, so it is more correct to call them walks). In a more recent variation of the theme, Dorigatti
nd Schubert [178] proposed to solve the problem of (1) selecting the best epitopes eliciting the strongest possible immune
esponse, and (2) arranging and linking the selected epitopes through short spacer sequences to string-of-beads vaccines
o as to increase the recovery likelihood of each epitope during antigen processing at the same time. Here again they based
heir approach on linear programming and solves both design steps simultaneously. They allowed to weigh the selection
f a set of epitopes that have great immunogenic potential against their assembly into a string-of-beads construct that
rovides a high chance of recovery. The authors followed Toussaint et al. [176] and defined an overall contribution of
n epitope to the vaccine immunogenicity as the weighted average of the log-transformed HLA binding strengths over a
pecified set of HLA alleles.
An important parameter to be taken into account during vaccine design is the vaccine length, which influences the

roduction and transfusion of the vaccine. The problem was approached by Vider-Shalit et al. [179] from a computational
erspective by calculating the peptide cleavage probability, transfer through TAP and MHC binding for a large number of
LA alleles. Then, the resulting peptide libraries were pruned for peptides that are not conserved or are too similar to
elf peptides. They used a genetic algorithm to produce an optimal protein composed of peptides from this list properly
rdered for cleavage by minimizing the length of the vaccine.
The problem of epitope assembly has also been considered from a combinatorial optimization perspective, for instance

y Martínez et al. [180,181]. Their approach can be resumed as follows. Given two sets of strings, a set of host strings,
hich models a set of instances of a protein, i.e., amino acid sequences of the protein for a given pathogen, and a set
f target strings, which models a set of epitopes, a λ-superstring is defined as a string that models a candidate vaccine
ontaining, as substrings, at least λ target strings from each host string. This means that the vaccine covers at least λ

32 The traveling salesman problem is the archetypal problem in combinatorial optimization. ore information can be found in: E. Lawler, D. Shmoys,
. Kan, and J. Lenstra, The TravelingSalesman Problem (John Wiley & Sons, Incorporated, 1985).
33 https://www.hiv.lanl.gov/content/sequence/EPIGRAPH/help.html.
34 A walk in a graph is a sequence of (not necessarily different) consecutive vertices and edges. A walk is closed if the starting and ending vertices
oincide. A path is a walk in which there is repetition of neither vertices nor edges.

https://www.hiv.lanl.gov/content/sequence/EPIGRAPH/help.html
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epitopes in each patient. The associated optimization problem was to find a λ-superstring of minimum length, which
means to find a candidate vaccine as short as possible.

A recent step forward in this combinatorial strategy was given by Dorigatti and Schubert [146] who presented a
unifying formalism of the general epitope vaccine design problem. They considered all phases of the design process
simultaneously and combined all prevalent design principles. The problem is finally formulated as an ILP which guarantees
optimality of the designs. Their approach generalizes the optimal design of the three kinds of epitope vaccines illustrated
in Fig. 4.3, whose design principles were stated before. The generalized scheme proposed by Dorigatti and Schubert [146]
(DG) is then formulated as follow.

• DG generalized epitopes vaccine design: Let G (V , E, w) be a weighted, directed graph where the vertices V represent
the epitopes and the weight w (·) of the edges E determine the design of the vaccine. An artificial node s representing
the N- and C-terminus of the vaccine is added, such that it connects to every vertex v ∈ V such that w (esv) = a
and w (evs) = b, with design-dependent weights a, b ∈ R. The optimal vaccine in G

(
Ṽ , Ẽ, w

)
, with Ṽ = V ∪ {s}

and Ẽ = E ∪ {(s, v) , (v, s) |v ∈ V } it is needed to seek n disjoint subsets P1, . . . , Pn ⊆ Ṽ , each of size at most k, that
together maximize the vaccine’s immunogenicity I : 2V

→ R, and whose simple tours H (P1) , . . . ,H (Pn), start and
end at s ∈ Ṽ and weigh at most h ∈ R, where the term simple tour refers to a closed walk with no repeated vertices
except for s.

According to [146] this generalized approach makes it possible to explore new regions of the vaccine design space, analyze
the trade-offs between the design phases, and balance the many requirements of vaccines.

5. Discussion

‘‘All models are wrong, but some are useful’’ is a common saying in statistics, which has been heard many times during
these days of the COVID-19 pandemic. This aphorism, generally attributed to the statistician George Box, expresses the
fact that models necessarily have to make assumptions that simplify the reality. A cow is not spherical, although the
volume of that spherical approximation can approach the reality under certain circumstances. The question is then to
express clearly and explicitly which are the assumptions and limitations of the model, such that we can understand to
which particular problems it can be applied. Under this paradigm, Box’s saying can be turned around to say that ‘‘All
models are right, but many are useless’’, namely because they are applied outside their proper scope or in a wrong way.
Although this is true to many physical models we circumscribe ourselves here to those used to analyze and mitigate the
impacts of a global pandemic.

In the situation of a global pandemic, in ‘‘war times’’ as it has been called by Vespignani [10], the impact of models goes
beyond academia, and plays a fundamental role (or at least such a role is expected to be played) in political decisions, and
in general public information. Therefore, the modeler should know the fact that her interlocutor is not necessarily aware of
the scope and limitations of the model used. We have seen here that two global groups of models are in use for predicting
epidemiological variables of COVID-19. One includes all compartmental models, from simple SIR to cumbersome models
including many compartments, mobility, spatial, age, and other kind of data. The other group encloses mainly those
statistical approaches based on data-driven methodologies as well as others with more limited scope. In general, most
of the models presented here to discuss epidemiological variables do an excellent job in reproducing past data of the
epidemic evolution. The problem arises when such models are used to predict future events. Several of the results
discussed in this Review simply contain a curve indicating a unique trajectory of the epidemic in future times. This false
impression of uniqueness given by deterministic epidemiological models has been criticized in the scientific literature
(see [72]). The inference made by many authors that because their model reproduces well the past trajectory of the
disease, it will reproduce well future outcomes is simply not correct. This is contrasting with the results illustrated in
Fig. 2.19, where the confidence interval indicates that completely opposed outcomes can be reached if a prediction is
made 40–60 days ahead from the last day of existing data. Opportunistic criticisms has then emerged against these (and
other) models, and Box’s saying has been heard truncated only at its first part, i.e., ‘‘all models are wrong’’. What is then
recommended? Of course, we can and should continue using deterministic epidemiological models. But, if a serious job
is going to be done with these models, then the modeler should:

(1) implement and report predictive posterior intervals for the model;
(2) make predictions only up to the point in which the lower and upper predictive intervals do not contradict each

other, e.g., avoid the situations where one bound predicts exponential growth on the other a control of the epidemic;
(3) update systematically the model, such that the predictive horizon is increased and the capacity of predicting

relatively short-time events increases the confidence in the model.

It should be reminded once again that the predictability of these models is not determined, although it is influenced by, the
quality of the data and the number of compartments used in the model. It is an inherent property of exponential growing
processes like the epidemic growth. Thus, the modeler should be aware that increasing the number of compartments and

variables could make the model more susceptible to those initial conditions.
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The other side of the coin can be illustrated by the statistical approaches yielding likelihoods of different scenarios.
he confidence intervals given for the predictions of these models can be so wide that they range from assumable
o catastrophic scenarios. These models are strongly dependent on the data existing to calibrate the epidemiological
ariables. In the current pandemic scenario some of these data, particularly when there has been lack of testing on
opulation, have been scarce, and the modelers have to make reasonable assumptions (see [182]). It has also been
emarked that such wide intervals projected, ‘‘limit predictability to the near future’’ [72]. Here again, the solution goes
hrough the points (2) and (3) recommended before for the case of compartment models. In this case we can observe
he dramatic improvement obtained by the application of this strategy (or something similar) for the case of the model
sed by Imperial College. In their Report 13, dated on March 30th, the prediction of the model for the percentage of
otal population infected (mean [95% credible interval]) for Spain was 15%, with a margin between 3.7% and 41% of the
opulation [71]. This produced a great alarm in the country because it could represent, in the upper interval, more than
9 million infected individuals, while the lower bound represented less than 2 million. The same prediction, reported in
Nature paper accepted on May 22th, predicted for Spain (as of 4th May) 5.5% of the population infected with a range
etween 4.4% and 7.0% [183], which was a realistic scenario.
The second big area covered by this review is that of drug repurposing for targeting SARS CoV-2. This is a subfield

f drug design, in which the researcher already dispose a list of candidate molecules, which are existing drugs, to be
nterrogated against one or several pharmacological targets in the virus. The great difference between modeling in this
rea and in that of epidemiology is that here the modeler can make controlled experiments and clinical trials to verify the
esults of her predictions. Evidently, we can differentiate between two different stages in the research for drug repurposing
n the emergency of a pandemic like COVID-19. The first is in the early stage of the epidemic when the 3D structures of
one of the proteins of the pathogen have been determined. In this case the use of many available bioinformatics tools
or constructing protein 3D structure from homologies with existing ones is very recommendable and have proved useful
n several previous instances. It should be remarked here that modelers in this area are trained to make such predictions
hich are then verified with the 3D structure of proteins. One example is the D3R Grand Challenge35 competition, where

the best existing models for drug design are identified. The competition is based on a few datasets, each comprising
one protein and multiple ligands with measured affinity data, and with protein–ligand co-crystal structures for at least
a subset of the ligands. The goal is to identify not only the best docking algorithms and scoring functions, but also to
identify weak points in the existing ones. These methods and algorithms are also useful when the structure of the target
is known, which evidently facilitates the work of the modeler. What is necessary in this area is a better collaboration
between existing groups of modelers and those that can test the output of their virtual screenings. In other words, a link
between the in silico and the in vitro worlds to approach more quickly to the in vivo universe.

Other areas of development of drug repurposing are younger and maybe least developed than the classical virtual
creening by molecular docking. This includes many different applications of network theory to signature matching,
enome-wide association, investigation of biological pathways, and others. More attention is needed for instance to the
redictability of the existing methods for identification of protein targeted by a given pathogen. Attention to potential
ombinations between these new approaches and those existing for drug design and repurposing is also important. For
nstance, the investigation of ligand–protein interactions from a network perspective seems to reveal aspects not revealed
y other approaches (see [108,112]).
The last area that we have reviewed here is that of vaccinomics and immunoinformatics, which is a promising, rela-

ively new area of interdisciplinary research. This area is still young and many researchers in the physics and mathematics
ommunities are not aware that their researches can have an important impact in accelerating the development of new
accines in the future. Here we have make emphasis in epitope vaccines due to two main reasons. The first is that these are
otentially the vaccines of the future, because by selecting an appropriate groups of epitopes we can address differences
n the population due to ethnicity, age and sex. Also it is possible to identify epitopes that account for potential mutations
f the virus that protect the population against future re-emergence of the same pathogen. The second is that the stage
f epitope assembly into a vaccine represents a combinatorial challenge where different mathematical methods used in
tatistical physics can provide appropriate answers. We have seen here that the use of graphs/networks and combinatorial
ptimization are frequently used for that purpose. But we are optimistic that opening the scope of approaches to other
hysico-mathematical tools will be of benefit in vaccionomics and immunoinformatics.
All in all, we consider that modeling tools of a wide range is not only important but also somehow vital for our survival

n front of this and future epidemics. We have walked a long way since the pioneering works that developed the first
ompartment models or implemented the first drug design approaches. We still need to improve our tools to tackle more
omplex challenges coming from emerging pathogens, and we hope that this review contributes to identify where we
re, and what we still need to do to be well prepared the next time.
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35 See the webpage of the competition t: https://drugdesigndata.org/about/grand-challenge.

https://drugdesigndata.org/about/grand-challenge


E. Estrada / Physics Reports 869 (2020) 1–51 47
Acknowledgments

The author is indebted to A. Aleta, A. Arenas, M. Bouhaddou, J. Cuesta, S. Eikenberry, J. Gómez-Gardeñes, E. Kuhl, C.
Lock Yue, P. Van Mieghem, Y. Moreno, M. Perc, T. Tripathi, P. Wang, and G. Wei-Wei for sharing figures of their works to
be included in the current review.

References

[1] V.C. Cheng, S.K. Lau, P.C. Woo, K.Y. Yuen, Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection,
Clin. Microbiol. Rev. 20 (4) (2007) 660–694.

[2] M. Richard, A. Kok, D. de Meulder, T.M. Bestebroer, M.M. Lamers, N.M. Okba, M.F. van Vlissingen, B. Rockx, B.L. Haagmans, M.P. Koopmans,
et al., SARS-CoV-2 is transmitted via contact and via the air between ferrets., Nat. Commun. 11 (2020) 3496.

[3] Y.M. Bar-On, A. Flamholz, R. Phillips, R. Milo, Science forum: SARS-CoV-2 (COVID-19) by the numbers, Elife 9 (2020) e57309.
[4] H.A. Rothan, S.N. Byrareddy, The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak, J. Autoimmun. 109 (2020)

102433.
[5] C. Vannabouathong, T. Devji, S. Ekhtiari, Y. Chang, S.A. Phillips, M. Zhu, Z. Chagla, C. Main, M. Bhandari, Novel coronavirus COVID-19: current

evidence and evolving strategies, J. Bone Joint Surg. 102 (9) (2020) 734.
[6] S.P. Layne, J.M. Hyman, D.M. Morens, J.K. Taubenberger, New coronavirus outbreak: Framing questions for pandemic prevention, Sci. Transl.

Med. 12 (534) (2020) eabb1469.
[7] A. Kucharski, Calculating virus spread, New Sci. 367 (6477) (2020) 23.
[8] J. Cohen, New coronavirus threat galvanizes scientists, Science 245 (3270) (2020) 492–493.
[9] Z. Cang, L. Mu, G.-W. Wei, Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening,

PLoS Comput. Biol. 14 (1) (2018) e1005929.
[10] A. Vespignani, H. Tian, C. Dye, J.O. Lloyd-Smith, R.M. Eggo, M. Shrestha, S.V. Scarpino, B. Gutierrez, M.U. Kraemer, J. Wu, et al., Modelling

COVID-19, Nat. Rev. Phys. 2 (2020) 279–281.
[11] W.O. Kermack, A.G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. Ser. A 115 (772) (1927) 700–721.
[12] Y. Liu, A.A. Gayle, A. Wilder-Smith, J. Rocklöv, The reproductive number of COVID-19 is higher compared to SARS coronavirus, J. Travel Med.

27 (2) (2020) taaa021.
[13] A. Cori, N.M. Ferguson, C. Fraser, S. Cauchemez, A new framework and software to estimate time-varying reproduction numbers during

epidemics, Am. J. Epidemiol. 178 (9) (2013) 1505–1512.
[14] M. Kivelä, A. Arenas, M. Barthelemy, J.P. Gleeson, Y. Moreno, M.A. Porter, Multilayer networks, J. Complex Netw. 2 (3) (2014) 203–271.
[15] S. Boccaletti, G. Bianconi, R. Criado, C.I. Del Genio, J. Gómez-Gardenes, M. Romance, I. Sendina-Nadal, Z. Wang, M. Zanin, The structure and

dynamics of multilayer networks, Phys. Rep. 544 (1) (2014) 1–122.
[16] W. Mei, S. Mohagheghi, S. Zampieri, F. Bullo, On the dynamics of deterministic epidemic propagation over networks, Annu. Rev. Control 44

(2017) 116–128.
[17] M. D’Arienzo, A. Coniglio, Assessment of the SARS-CoV-2 basic reproduction number, R0, based on the early phase of COVID-19 outbreak in

Italy, Biosaf. Health 2 (2) (2020) 57–59.
[18] J. Wangping, H. Ke, S. Yang, C. Wenzhe, W. Shengshu, Y. Shanshan, W. Jianwei, K. Fuyin, T. Penggang, L. Jing, et al., Extended SIR prediction

of the epidemics trend of COVID-19 in Italy and compared with hunan, China, Front. Med. 7 (2020) 169.
[19] C. You, Y. Deng, W. Hu, J. Sun, Q. Lin, F. Zhou, C.H. Pang, Y. Zhang, Z. Chen, X.-H. Zhou, Estimation of the time-varying reproduction number

of COVID-19 outbreak in China, Int. J. Hyg. Environ. Health 228 (2020) 113555.
[20] W.C. Roda, M.B. Varughese, D. Han, M.Y. Li, Why is it difficult to accurately predict the COVID-19 epidemic? Infect. Dis. Model. 5 (2020)

271–281.
[21] D. Fanelli, F. Piazza, Analysis and forecast of COVID-19 spreading in China, Italy and France, Chaos Solitons Fractals 134 (2020) 109761.
[22] C. Anastassopoulou, L. Russo, A. Tsakris, C. Siettos, Data-based analysis, modelling and forecasting of the COVID-19 outbreak, PLoS One 15 (3)

(2020) e0230405.
[23] B. Prasse, M.A. Achterberg, L. Ma, P. Van Mieghem, Network-based prediction of the 2019-nCoV epidemic outbreak in the chinese province

hubei, 2020, arXiv preprint arXiv:2002.04482.
[24] J. Wallinga, M. Lipsitch, How generation intervals shape the relationship between growth rates and reproductive numbers, Proc. R. Soc. B 274

(1609) (2007) 599–604.
[25] T. Zhou, Q. Liu, Z. Yang, J. Liao, K. Yang, W. Bai, X. Lu, W. Zhang, Preliminary prediction of the basic reproduction number of the Wuhan

novel coronavirus 2019-nCoV, J. Evidence-Based Med. 13 (1) (2020) 3–7.
[26] Y. Fang, Y. Nie, M. Penny, Transmission dynamics of the COVID-19 outbreak and effectiveness of government interventions: A data-driven

analysis, J. Med. Virol. 92 (6) (2020) 645–659.
[27] C. Hou, J. Chen, Y. Zhou, L. Hua, J. Yuan, S. He, Y. Guo, S. Zhang, Q. Jia, C. Zhao, et al., The effectiveness of quarantine of Wuhan city against

the Corona Virus Disease 2019 (COVID-19): A well-mixed SEIR model analysis, J. Med. Virol. 92 (2020) 841–848.
[28] G.J. Fox, J.M. Trauer, E. McBryde, Modelling the impact of COVID-19 upon intensive care services in New South Wales, Med. J. Aust. (2020)

Preprint, https://www.mja.com.au/system/files/2020-03/Preprint.
[29] N. Ferguson, D. Laydon, G. Nedjati Gilani, N. Imai, K. Ainslie, M. Baguelin, S. Bhatia, A. Boonyasiri, Z. Cucunuba Perez, G. Cuomo-Dannenburg,

et al., Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand, 2020.
[30] A. Grant, Dynamics of COVID-19 epidemics: SEIR models underestimate peak infection rates and overestimate epidemic duration, 2020,

medRxiv, https://www.medrxiv.org/content/medrxiv/early/2020/04/06/2020.04.02.20050674.full.pdf.
[31] M. Small, D. Cavanagh, Modelling strong control measures for epidemic propagation with networks–a COVID-19 case study, 2020, arXiv

preprint arXiv:2004.10396.
[32] K. Linka, M. Peirlinck, F. Sahli Costabal, E. Kuhl, Outbreak dynamics of COVID-19 in europe and the effect of travel restrictions, Comput.

Methods Biomech. Biomed. Eng. (2020) http://dx.doi.org/10.1080/10255842.2020.1759560, in press.
[33] N.N. Chung, L.Y. Chew, Modelling Singapore COVID-19 pandemic with a SEIR multiplex network model, 2020, medRxiv, http://dx.doi.org/10.

1101/2020.05.31.20118372.
[34] H. Tian, Y. Liu, Y. Li, C.-H. Wu, B. Chen, M.U. Kraemer, B. Li, J. Cai, B. Xu, Q. Yang, et al., An investigation of transmission control measures

during the first 50 days of the COVID-19 epidemic in China, Science 368 (6491) (2020) 638–642.
[35] C. Manchein, E.L. Brugnago, R.M. da Silva, C.F. Mendes, M.W. Beims, Strong correlations between power-law growth of COVID-19 in four

continents and the inefficiency of soft quarantine strategies, Chaos 30 (4) (2020) 041102.

http://refhub.elsevier.com/S0370-1573(20)30254-4/sb1
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb1
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb1
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb2
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb2
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb2
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb3
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb4
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb4
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb4
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb5
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb5
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb5
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb6
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb6
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb6
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb7
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb8
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb9
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb9
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb9
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb10
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb10
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb10
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb11
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb12
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb12
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb12
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb13
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb13
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb13
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb14
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb15
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb15
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb15
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb16
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb16
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb16
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb17
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb17
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb17
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb18
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb18
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb18
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb19
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb19
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb19
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb20
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb20
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb20
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb21
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb22
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb22
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb22
http://arxiv.org/abs/2002.04482
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb24
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb24
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb24
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb25
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb25
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb25
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb26
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb26
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb26
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb27
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb27
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb27
https://www.mja.com.au/system/files/2020-03/Preprint
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb29
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb29
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb29
https://www.medrxiv.org/content/medrxiv/early/2020/04/06/2020.04.02.20050674.full.pdf
http://arxiv.org/abs/2004.10396
http://dx.doi.org/10.1080/10255842.2020.1759560
http://dx.doi.org/10.1101/2020.05.31.20118372
http://dx.doi.org/10.1101/2020.05.31.20118372
http://dx.doi.org/10.1101/2020.05.31.20118372
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb34
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb34
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb34
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb35
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb35
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb35


48 E. Estrada / Physics Reports 869 (2020) 1–51
[36] M. Peirlinck, K. Linka, F.S. Costabal, E. Kuhl, Outbreak dynamics of COVID-19 in China and the United States, Biomech. Model. Mechanobiol.
(2020) http://dx.doi.org/10.1007/s10237-020-01332-5, in press.

[37] A.J. Kucharski, T.W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, R.M. Eggo, F. Sun, M. Jit, J.D. Munday, et al., Early dynamics of transmission
and control of COVID-19: a mathematical modelling study, Lancet Infect. Dis. 20 (5) (2020) 553–558.

[38] P. Block, M. Hoffman, I.J. Raabe, J.B. Dowd, C. Rahal, R. Kashyap, M.C. Mills, Social network-based distancing strategies to flatten the COVID-19
curve in a post-lockdown world, Nat. Hum. Behav. 4 (2020) 588–596.

[39] M.J. Keeling, T. Hollingsworth, J.M. Read, The efficacy of contact tracing for the containment of the 2019 novel coronavirus (COVID-19), 2020,
medRxiv, http://dx.doi.org/10.1101/2020.02.14.20023036.

[40] A. Aleta, Y. Moreno, Evaluation of the potential incidence of COVID-19 and effectiveness of containment measures in Spain: a data-driven
approach, BMC Med. 18 (2020) 1–12.

[41] C. Yang, J. Wang, A mathematical model for the novel coronavirus epidemic in Wuhan, China, Math. Biosci. Eng. 17 (3) (2020) 2708–2724.
[42] B.F. Maier, D. Brockmann, Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China, Science 368

(6492) (2020) 742–746.
[43] S. Zhao, H. Chen, Modeling the epidemic dynamics and control of COVID-19 outbreak in China, Quant. Biol. 8 (1) (2020) 11–19.
[44] A. Godio, F. Pace, A. Vergnano, SEIR modeling of the Italian epidemic of SARS-CoV-2 using computational swarm intelligence, Int. J. Environ.

Res. Public Health 17 (10) (2020) 3535, http://dx.doi.org/10.3390/ijerph17103535, http://dx.doi.org/10.3390/ijerph17103535.
[45] L. Peng, W. Yang, D. Zhang, C. Zhuge, L. Hong, Epidemic analysis of COVID-19 in China by dynamical modeling, 2020, arXiv preprint

arXiv:2002.06563.
[46] E. Cheynet, Generalized SEIR epidemic model (fitting and computation), 2020, https://nam03.safelinks.protection.

outlook.com/?url=http%3A%2F%2Fgithub.com%2FEcheynet%2FSEIR&amp;data=02%7C01%7Ccorrections.rivervalley%40elsevier.com%
7C1dd187211cef4d13e8f008d8348461b8%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637317090477039039&amp;sdata=
NCXiJurvlJxIvetty87jmbxb%2BKmAwdgzN7RW2GtmtFo%3D&amp;reserved=0.

[47] H. Wan, J.-a. Cui, G.-J. Yang, Risk estimation and prediction by modeling the transmission of the novel coronavirus (COVID-19) in mainland
China excluding hubei province, 2020, medRxiv, https://www.medrxiv.org/content/10.1101/2020.03.01.20029629v3.

[48] B. Ivorra, M. Ferrández, M. Vela-Pérez, A. Ramos, Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) considering
its particular characteristics. The case of China, Commun. Nonlinear Sci. Numer. Simul. 88 (2020) 105303.

[49] T.-M. Chen, J. Rui, Q.-P. Wang, Z.-Y. Zhao, J.-A. Cui, L. Yin, A mathematical model for simulating the phase-based transmissibility of a novel
coronavirus, Infect. Dis. Poverty 9 (1) (2020) 1–8.

[50] S.E. Eikenberry, M. Mancuso, E. Iboi, T. Phan, K. Eikenberry, Y. Kuang, E. Kostelich, A.B. Gumel, To mask or not to mask: Modeling the potential
for face mask use by the general public to curtail the COVID-19 pandemic, Infect. Dis. Model. 5 (2020) 293–308.

[51] L. López, X. Rodó, The end of social confinement and COVID-19 re-emergence risk, Nat. Hum. Behav. 4 (2020) 746–755.
[52] G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di Filippo, A. Di Matteo, M. Colaneri, Modelling the COVID-19 epidemic and implementation

of population-wide interventions in Italy, Nat. Med. 26 (2020) 855–860.
[53] D. Balcan, V. Colizza, B. Gonçalves, H. Hu, J.J. Ramasco, A. Vespignani, Multiscale mobility networks and the spatial spreading of infectious

diseases, Proc. Natl. Acad. Sci. 106 (51) (2009) 21484–21489.
[54] D. Balcan, B. Gonçalves, H. Hu, J.J. Ramasco, V. Colizza, A. Vespignani, Modeling the spatial spread of infectious diseases: The global epidemic

and mobility computational model, J. Comput. Sci. 1 (3) (2010) 132–145.
[55] D. Balcan, H. Hu, B. Goncalves, P. Bajardi, C. Poletto, J.J. Ramasco, D. Paolotti, N. Perra, M. Tizzoni, W. Van den Broeck, et al., Seasonal

transmission potential and activity peaks of the new influenza a (H1N1): a Monte Carlo likelihood analysis based on human mobility, BMC
Med. 7 (1) (2009) 45.

[56] M. Chinazzi, J.T. Davis, M. Ajelli, C. Gioannini, M. Litvinova, S. Merler, A.P. y Piontti, K. Mu, L. Rossi, K. Sun, et al., The effect of travel restrictions
on the spread of the 2019 novel coronavirus (COVID-19) outbreak, Science 368 (6489) (2020) 395–400.

[57] R. Li, S. Pei, B. Chen, Y. Song, T. Zhang, W. Yang, J. Shaman, Substantial undocumented infection facilitates the rapid dissemination of novel
coronavirus (SARS-CoV-2), Science 368 (6490) (2020) 489–493.

[58] A. Aleta, D. Martin-Corral, A.P. y Piontti, M. Ajelli, M. Litvinova, M. Chinazzi, N.E. Dean, M.E. Halloran, I.M. Longini Jr, S. Merler, et al., Modeling
the impact of social distancing, testing, contact tracing and household quarantine on second-wave scenarios of the COVID-19 epidemic, 2020,
medRxiv, http://dx.doi.org/10.1101/2020.05.06.20092841.

[59] A. Arenas, W. Cota, J. Gomez-Gardenes, S. Gomez, C. Granell, J.T. Matamalas, D. Soriano-Panos, B. Steinegger, Derivation of the effective
reproduction number R for COVID-19 in relation to mobility restrictions and confinement, 2020, medRxiv, https://www.medrxiv.org/content/
10.1101/2020.04.06.20054320v1.

[60] A. Arenas, W. Cota, J. Gomez-Gardenes, S. Gómez, C. Granell, J.T. Matamalas, D. Soriano-Panos, B. Steinegger, A mathematical model for the
spatiotemporal epidemic spreading of COVID19, 2020, MedRxiv, https://www.medrxiv.org/content/10.1101/2020.03.21.20040022v1.

[61] J. Gómez-Gardenes, D. Soriano-Panos, A. Arenas, Critical regimes driven by recurrent mobility patterns of reaction–diffusion processes in
networks, Nat. Phys. 14 (4) (2018) 391–395.

[62] D. Soriano-Paños, L. Lotero, A. Arenas, J. Gómez-Gardeñes, Spreading processes in multiplex metapopulations containing different mobility
networks, Phys. Rev. X 8 (3) (2018) 031039.

[63] D. Soriano-Paños, J.H. Arias-Castro, A. Reyna-Lara, H.J. Martínez, S. Meloni, J. Gómez-Gardeñes, Vector-borne epidemics driven by human
mobility, Phys. Rev. Res. 2 (1) (2020) 013312.

[64] C.R. Wells, P. Sah, S.M. Moghadas, A. Pandey, A. Shoukat, Y. Wang, Z. Wang, L.A. Meyers, B.H. Singer, A.P. Galvani, Impact of international travel
and border control measures on the global spread of the novel 2019 coronavirus outbreak, Proc. Natl. Acad. Sci. 117 (13) (2020) 7504–7509.

[65] P. Wang, J.-a. Lu, Y. Jin, M. Zhu, L. Wang, S. Chen, Statistical and network analysis of 1212 COVID-19 patients in Henan, China, Int. J. Infect.
Dis. 95 (2020) 391–398.

[66] S. Zhao, Z. Zhuang, P. Cao, J. Ran, D. Gao, Y. Lou, L. Yang, Y. Cai, W. Wang, D. He, et al., Quantifying the association between domestic travel
and the exportation of novel coronavirus (2019-nCoV) cases from Wuhan, China in 2020: a correlational analysis, J. Travel Med. 27 (2) (2020)
taaa022.

[67] J.O. Lloyd-Smith, S.J. Schreiber, P.E. Kopp, W.M. Getz, Superspreading and the effect of individual variation on disease emergence, Nature 438
(7066) (2005) 355–359.

[68] J. Hellewell, S. Abbott, A. Gimma, N.I. Bosse, C.I. Jarvis, T.W. Russell, J.D. Munday, A.J. Kucharski, W.J. Edmunds, F. Sun, et al., Feasibility of
controlling COVID-19 outbreaks by isolation of cases and contacts, Lancet Global Health 8 (4) (2020) e488–e496.

[69] M. Perc, N. Gorišek Miksić, M. Slavinec, A. Stožer, Forecasting covid-19, Front. Phys. 8 (2020) 127.
[70] N.M. Ferguson, D.A. Cummings, C. Fraser, J.C. Cajka, P.C. Cooley, D.S. Burke, Strategies for mitigating an influenza pandemic, Nature 442 (7101)

(2006) 448–452.
[71] S. Flaxman, S. Mishra, A. Gandy, H. Unwin, H. Coupland, T. Mellan, H. Zhu, T. Berah, J. Eaton, P. Perez Guzman, et al., Report 13: Estimating

the number of infections and the impact of non-pharmaceutical interventions on COVID-19 in 11 European countries, 2020.

http://dx.doi.org/10.1007/s10237-020-01332-5
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb37
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb37
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb37
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb38
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb38
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb38
http://dx.doi.org/10.1101/2020.02.14.20023036
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb40
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb40
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb40
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb41
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb42
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb42
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb42
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb43
http://dx.doi.org/10.3390/ijerph17103535
http://dx.doi.org/10.3390/ijerph17103535
http://arxiv.org/abs/2002.06563
https://nam03.safelinks.protection.outlook.com/?url=http%3A%2F%2Fgithub.com%2FEcheynet%2FSEIR&amp;data=02%7C01%7Ccorrections.rivervalley%40elsevier.com%7C1dd187211cef4d13e8f008d8348461b8%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637317090477039039&amp;sdata=NCXiJurvlJxIvetty87jmbxb%2BKmAwdgzN7RW2GtmtFo%3D&amp;reserved=0
https://nam03.safelinks.protection.outlook.com/?url=http%3A%2F%2Fgithub.com%2FEcheynet%2FSEIR&amp;data=02%7C01%7Ccorrections.rivervalley%40elsevier.com%7C1dd187211cef4d13e8f008d8348461b8%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637317090477039039&amp;sdata=NCXiJurvlJxIvetty87jmbxb%2BKmAwdgzN7RW2GtmtFo%3D&amp;reserved=0
https://nam03.safelinks.protection.outlook.com/?url=http%3A%2F%2Fgithub.com%2FEcheynet%2FSEIR&amp;data=02%7C01%7Ccorrections.rivervalley%40elsevier.com%7C1dd187211cef4d13e8f008d8348461b8%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637317090477039039&amp;sdata=NCXiJurvlJxIvetty87jmbxb%2BKmAwdgzN7RW2GtmtFo%3D&amp;reserved=0
https://nam03.safelinks.protection.outlook.com/?url=http%3A%2F%2Fgithub.com%2FEcheynet%2FSEIR&amp;data=02%7C01%7Ccorrections.rivervalley%40elsevier.com%7C1dd187211cef4d13e8f008d8348461b8%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637317090477039039&amp;sdata=NCXiJurvlJxIvetty87jmbxb%2BKmAwdgzN7RW2GtmtFo%3D&amp;reserved=0
https://nam03.safelinks.protection.outlook.com/?url=http%3A%2F%2Fgithub.com%2FEcheynet%2FSEIR&amp;data=02%7C01%7Ccorrections.rivervalley%40elsevier.com%7C1dd187211cef4d13e8f008d8348461b8%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637317090477039039&amp;sdata=NCXiJurvlJxIvetty87jmbxb%2BKmAwdgzN7RW2GtmtFo%3D&amp;reserved=0
https://nam03.safelinks.protection.outlook.com/?url=http%3A%2F%2Fgithub.com%2FEcheynet%2FSEIR&amp;data=02%7C01%7Ccorrections.rivervalley%40elsevier.com%7C1dd187211cef4d13e8f008d8348461b8%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637317090477039039&amp;sdata=NCXiJurvlJxIvetty87jmbxb%2BKmAwdgzN7RW2GtmtFo%3D&amp;reserved=0
https://nam03.safelinks.protection.outlook.com/?url=http%3A%2F%2Fgithub.com%2FEcheynet%2FSEIR&amp;data=02%7C01%7Ccorrections.rivervalley%40elsevier.com%7C1dd187211cef4d13e8f008d8348461b8%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637317090477039039&amp;sdata=NCXiJurvlJxIvetty87jmbxb%2BKmAwdgzN7RW2GtmtFo%3D&amp;reserved=0
https://www.medrxiv.org/content/10.1101/2020.03.01.20029629v3
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb48
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb48
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb48
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb49
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb49
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb49
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb50
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb50
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb50
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb51
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb52
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb52
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb52
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb53
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb53
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb53
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb54
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb54
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb54
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb55
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb55
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb55
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb55
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb55
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb56
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb56
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb56
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb57
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb57
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb57
http://dx.doi.org/10.1101/2020.05.06.20092841
https://www.medrxiv.org/content/10.1101/2020.04.06.20054320v1
https://www.medrxiv.org/content/10.1101/2020.04.06.20054320v1
https://www.medrxiv.org/content/10.1101/2020.04.06.20054320v1
https://www.medrxiv.org/content/10.1101/2020.03.21.20040022v1
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb61
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb61
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb61
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb62
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb62
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb62
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb63
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb63
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb63
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb64
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb64
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb64
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb65
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb65
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb65
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb66
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb66
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb66
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb66
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb66
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb67
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb67
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb67
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb68
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb68
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb68
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb69
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb70
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb70
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb70
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb71
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb71
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb71


E. Estrada / Physics Reports 869 (2020) 1–51 49
[72] M. Castro, S. Ares, J.A. Cuesta, S. Manrubia, Predictability: Can the turning point and end of an expanding epidemic be precisely forecast? 2020,
arXiv preprint arXiv:2004.08842.

[73] S. Chaudhuri, J.A. Symons, J. Deval, Innovation and trends in the development and approval of antiviral medicines: 1987–2017 and beyond,
Antiviral Res. 155 (2018) 76–88.

[74] S. Pushpakom, F. Iorio, P.A. Eyers, K.J. Escott, S. Hopper, A. Wells, A. Doig, T. Guilliams, J. Latimer, C. McNamee, et al., Drug repurposing:
progress, challenges and recommendations, Nat. Rev. Drug Discov. 18 (1) (2019) 41–58.

[75] R.A. Hodos, B.A. Kidd, K. Shameer, B.P. Readhead, J.T. Dudley, In silico methods for drug repurposing and pharmacology, Wiley Interdiscip.
Rev. Syst. Biol. Med. 8 (3) (2016) 186–210.

[76] N.C. Baker, S. Ekins, A.J. Williams, A. Tropsha, A bibliometric review of drug repurposing, Drug Discov. Today 23 (3) (2018) 661–672.
[77] E. March-Vila, L. Pinzi, N. Sturm, A. Tinivella, O. Engkvist, H. Chen, G. Rastelli, On the integration of in silico drug design methods for drug

repurposing, Front. Pharmacol. 8 (2017) 298.
[78] M.J. Keiser, V. Setola, J.J. Irwin, C. Laggner, A.I. Abbas, S.J. Hufeisen, N.H. Jensen, M.B. Kuijer, R.C. Matos, T.B. Tran, et al., Predicting new

molecular targets for known drugs, Nature 462 (7270) (2009) 175–181.
[79] B. Mercorelli, G. Palù, A. Loregian, Drug repurposing for viral infectious diseases: how far are we? TIM 26 (10) (2018) 865–876.
[80] M.A. Shereen, S. Khan, A. Kazmi, N. Bashir, R. Siddique, COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses,

J. Adv. Res. 24 (2020) 91–98.
[81] I. Astuti, et al., Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response, Diabetes

Metab. Syndrome Clin. Res. Rev. 14 (4) (2020) 407–412.
[82] O.O. Glebov, Understanding SARS-CoV-2 endocytosis for COVID-19 drug repurposing, FEBS J. (2020) http://dx.doi.org/10.1111/febs.15369, in

press.
[83] L.-s. Wang, Y.-r. Wang, D.-w. Ye, Q.-q. Liu, A review of the 2019 novel coronavirus (COVID-19) based on current evidence, Int. J. Antimicrob.

Ag. 55 (6) (2020) 105948.
[84] D.E. Gordon, G.M. Jang, M. Bouhaddou, J. Xu, K. Obernier, K.M. White, M.J. O’Meara, V.V. Rezelj, J.Z. Guo, D.L. Swaney, et al., A SARS-CoV-2

protein interaction map reveals targets for drug repurposing, Nature 583 (2020) 459–468.
[85] H. Zhou, Y. Fang, T. Xu, W.-J. Ni, A.-Z. Shen, X.-M. Meng, Potential therapeutic targets and promising drugs for combating SARS-CoV-2, Br. J.

Pharmacol. 177 (2020) 3147–3161.
[86] E. De Clercq, G. Li, Approved antiviral drugs over the past 50 years, Clin. Microbiol. Rev. 29 (3) (2016) 695–747.
[87] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne, The protein data bank, Nucleic Acids Res.

28 (1) (2000) 235–242.
[88] L. Zhang, D. Lin, X. Sun, U. Curth, C. Drosten, L. Sauerhering, S. Becker, K. Rox, R. Hilgenfeld, Crystal structure of SARS-CoV-2 main protease

provides a basis for design of improved α-ketoamide inhibitors, Science 368 (6489) (2020) 409–412.
[89] W. Rut, Z. Lv, M. Zmudzinski, S. Patchett, D. Nayak, S.J. Snipas, F. El Oualid, M. Bekes, T.T. Huang, M. Drag, et al., Activity profiling

and structures of inhibitor-bound SARS-CoV-2-PLpro protease provides a framework for anti-COVID-19 drug design, 2020, bioRxiv, http:
//dx.doi.org/10.1101/2020.04.29.068890.

[90] Y. Kim, J. Wower, N. Maltseva, C. Chang, R. Jedrzejczak, M. Wilamowski, S. Kang, V. Nicolaescu, G. Randall, K. Michalska, et al., Tipiracil binds
to uridine site and inhibits nsp15 endoribonuclease nendou from SARS-CoV-2, 2020, bioRxiv, http://dx.doi.org/10.1101/2020.06.26.173872.

[91] W. Yin, C. Mao, X. Luan, D.-D. Shen, Q. Shen, H. Su, X. Wang, F. Zhou, W. Zhao, M. Gao, et al., Structural basis for inhibition of the RNA-dependent
RNA polymerase from SARS-CoV-2 by remdesivir, Science 368 (6498) (2020) 1499–1504.

[92] J. Liu, R. Wang, Classification of current scoring functions, J. Chem. Inform. Model. 55 (3) (2015) 475–482.
[93] Z. Jin, X. Du, Y. Xu, Y. Deng, M. Liu, Y. Zhao, B. Zhang, X. Li, L. Zhang, C. Peng, et al., Structure of m pro from SARS-CoV-2 and discovery of

its inhibitors, Nature 582 (2020) 289–293.
[94] A.-T. Ton, F. Gentile, M. Hsing, F. Ban, A. Cherkasov, Rapid identification of potential inhibitors of SARS-CoV-2 main protease by deep docking

of 1.3 billion compounds, Mol. Inform. 39 (2020) 2000028.
[95] A. Fischer, M. Sellner, S. Neranjan, M. Smieško, M.A. Lill, Potential inhibitors for novel coronavirus protease identified by virtual screening of

606 million compounds, Int. J. Mol. Sci. 21 (10) (2020) 3626.
[96] B. Tang, F. He, D. Liu, M. Fang, Z. Wu, D. Xu, AI-aided design of novel targeted covalent inhibitors against SARS-CoV-2, 2020, bioRxiv,

https://www.biorxiv.org/content/10.1101/2020.03.03.972133v1.full.
[97] S.A. Khan, K. Zia, S. Ashraf, R. Uddin, Z. Ul-Haq, Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated

computational approach, J. Biomol. Struct. Dyn. (2020) http://dx.doi.org/10.1080/07391102.2020.1751298, in press.
[98] M. Tsuji, Potential anti-SARS-CoV-2 drug candidates identified through virtual screening of the ChEMBL database for compounds that target

the main coronavirus protease, FEBS Open Bio 10 (2020) 995–1004.
[99] D.C. Hall Jr, H.-F. Ji, A search for medications to treat COVID-19 via in silico molecular docking models of the SARS-CoV-2 spike glycoprotein

and 3CL protease, Travel Med. Infect. Dis. 35 (2020) 101646.
[100] R.S. Joshi, S.S. Jagdale, S.B. Bansode, S.S. Shankar, M.B. Tellis, V.K. Pandya, A. Chugh, A.P. Giri, M.J. Kulkarni, Discovery of potential multi-

target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease, J. Biomol. Struct. Dyn. (2020) http:
//dx.doi.org/10.1080/07391102.2020.1760137, in press.

[101] D.D. Nguyen, K. Gao, J. Chen, R. Wang, G.-W. Wei, Unveiling the molecular mechanism of SARS-CoV-2 main protease inhibition from 92 crystal
structures, 2020, arXiv preprint arXiv:2005.13653.

[102] D.D. Nguyen, K. Gao, M. Wang, G.-W. Wei, MathDL: mathematical deep learning for D3R Grand Challenge 4, J. Comput. Aided Mol. Des. 34
(2) (2020) 131–147.

[103] Z. Cang, G.-W. Wei, Integration of element specific persistent homology and machine learning for protein-ligand binding affinity prediction,
Int. J. Numer. Methods Biomed. Eng. 34 (2) (2018) e2914.

[104] B. DasGupta, J. Liang, Models and Algorithms for Biomolecules and Molecular Networks, John Wiley & Sons, 2016.
[105] K. Xia, G.-W. Wei, A review of geometric, topological and graph theory apparatuses for the modeling and analysis of biomolecular data, 2016,

arXiv preprint arXiv:1612.01735.
[106] C.S. Pun, K. Xia, S.X. Lee, Persistent-homology-based machine learning and its applications–A survey, 2018, arXiv preprint arXiv:1811.00252.
[107] Z. Cang, G.-W. Wei, Integration of element specific persistent homology and machine learning for protein-ligand binding affinity prediction,

Int. J. Numer. Methods Biomed. Eng. 34 (2) (2018) e2914.
[108] E. Estrada, Topological analysis of SARS CoV-2 main protease, Chaos 30 (6) (2020) 061102.
[109] E. Estrada, The Structure of Complex Networks: Theory and Applications, Oxford University Press, 2012.
[110] E. Estrada, G. Silver, Accounting for the role of long walks on networks via a new matrix function, J. Math. Anal. Appl. 449 (2) (2017)

1581–1600.
[111] J. Chen, K. Gao, R. Wang, D.D. Nguyen, G.-W. Wei, Review of COVID-19 antibody therapies, 2020, arXiv preprint arXiv:2006.10584.
[112] L. Abadias, G. Estrada-Rodriguez, E. Estrada, Fractional logarithmic susceptible-infected model. Definition and applications to the study of

COVID-19 main protease, Fract. Calc. Appl. Anal. 23 (2) (2020) 635–655.

http://arxiv.org/abs/2004.08842
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb73
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb73
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb73
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb74
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb74
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb74
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb75
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb75
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb75
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb76
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb77
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb77
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb77
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb78
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb78
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb78
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb79
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb80
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb80
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb80
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb81
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb81
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb81
http://dx.doi.org/10.1111/febs.15369
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb83
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb83
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb83
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb84
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb84
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb84
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb85
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb85
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb85
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb86
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb87
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb87
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb87
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb88
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb88
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb88
http://dx.doi.org/10.1101/2020.04.29.068890
http://dx.doi.org/10.1101/2020.04.29.068890
http://dx.doi.org/10.1101/2020.04.29.068890
http://dx.doi.org/10.1101/2020.06.26.173872
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb91
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb91
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb91
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb92
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb93
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb93
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb93
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb94
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb94
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb94
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb95
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb95
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb95
https://www.biorxiv.org/content/10.1101/2020.03.03.972133v1.full
http://dx.doi.org/10.1080/07391102.2020.1751298
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb98
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb98
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb98
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb99
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb99
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb99
http://dx.doi.org/10.1080/07391102.2020.1760137
http://dx.doi.org/10.1080/07391102.2020.1760137
http://dx.doi.org/10.1080/07391102.2020.1760137
http://arxiv.org/abs/2005.13653
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb102
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb102
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb102
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb103
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb103
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb103
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb104
http://arxiv.org/abs/1612.01735
http://arxiv.org/abs/1811.00252
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb107
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb107
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb107
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb108
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb109
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb110
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb110
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb110
http://arxiv.org/abs/2006.10584
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb112
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb112
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb112


50 E. Estrada / Physics Reports 869 (2020) 1–51
[113] M. Miotto, L. Di Rienzo, P. Corsi, G. Ruocco, D. Raimondo, E. Milanetti, Simulated epidemics in 3d protein structures to detect functional
properties, J. Chem. Inform. Model. 60 (3) (2020) 1884–1891.

[114] M. Rosas-Lemus, G. Minasov, L. Shuvalova, N.L. Inniss, O. Kiryukhina, G. Wiersum, Y. Kim, R. Jedrzejczak, N.I. Maltseva, M. Endres, et al., The
crystal structure of nsp10-nsp16 heterodimer from SARS-CoV-2 in complex with S-adenosylmethionine, 2020, bioRxiv, http://dx.doi.org/10.
1101/2020.04.17.047498.

[115] Y. Jiang, L. Liu, M. Manning, M. Bonahoom, A. Lotvola, Z.-Q. Yang, Repurposing therapeutics to identify novel inhibitors targeting 2’-O-ribose
methyltransferase nsp16 of SARS-CoV-2, 2020.

[116] K. Sharma, S. Morla, A. Goyal, S. Kumar, Computational guided drug repurposing for targeting 2’-O-ribose methyltransferase of SARS-CoV-2,
2020.

[117] R.J. Khan, R.K. Jha, G.M. Amera, M. Jain, E. Singh, A. Pathak, R.P. Singh, J. Muthukumaran, A.K. Singh, Targeting SARS-CoV-2: a systematic drug
repurposing approach to identify promising inhibitors against 3C-like proteinase and 2’-O-ribose methyltransferase, J. Biomol. Struct. Dyn.
(2020) http://dx.doi.org/10.1080/07391102.2020.1753577, in press.

[118] D. Wrapp, N. Wang, K.S. Corbett, J.A. Goldsmith, C.-L. Hsieh, O. Abiona, B.S. Graham, J.S. McLellan, Cryo-EM structure of the 2019-nCoV spike
in the prefusion conformation, Science 367 (6483) (2020) 1260–1263.

[119] M. Shah, B. Ahmad, S. Choi, H.G. Woo, Sequence variation of SARS-CoV-2 spike protein may facilitate stronger interaction with ace2 promoting
high infectivity, 2020, http://dx.doi.org/10.21203/rs.3.rs-16932/v1.

[120] O.V. de Oliveira, G.B. Rocha, A.S. Paluch, L.T. Costa, Repurposing approved drugs as inhibitors of SARS-CoV-2 S-protein from molecular modeling
and virtual screening, J. Biomol. Struct. Dyn. (2020) http://dx.doi.org/10.1080/07391102.2020.1772885, in press.

[121] L. Caly, J.D. Druce, M.G. Catton, D.A. Jans, K.M. Wagstaff, The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro,
Antiviral Res. 178 (2020) 104787.

[122] T. Wei, H. Wang, X. Wu, Y. Lu, S. Guan, F. Dong, C. Dong, G. Zhu, Y. Bao, J. Zhang, et al., In silico screening of potential spike glycoprotein
inhibitors of SARS-CoV-2 with drug repurposing strategy, 2020, https://covid-19.conacyt.mx/jspui/handle/1000/4059.

[123] B.O. Villoutreix, J. Creemers, Y. Léger, G. Siegfried, E. Decroly, S. Evrard, A.-M. Khatib, Targeting furin activity through in silico and in vitro
drug repurposing strategy for SARS-CoV-2 spike glycoprotein cleavage repression, 2020, http://dx.doi.org/10.21203/rs.3.rs-25856/v1.

[124] M. Örd, I. Faustova, M. Loog, Biochemical evidence of furin specificity and potential for phospho-regulation at spike protein S1/S2 cleavage
site in SARS-CoV2 but not in SARS-CoV1 or MERS-CoV, 2020, bioRxiv, http://dx.doi.org/10.1101/2020.04.17.047498.

[125] J.F. Borgio, H.S. Alsuwat, W.M. Al Otaibi, A.M. Ibrahim, N.B. Almandil, L.I. Al Asoom, M. Salahuddin, B. Kamaraj, S. AbdulAzeez, State-of-the-art
tools unveil potent drug targets amongst clinically approved drugs to inhibit helicase in SARS-CoV-2, Arch. Med. Sci. 16 (3) (2020) 508.

[126] H.S. Hillen, G. Kokic, L. Farnung, C. Dienemann, D. Tegunov, P. Cramer, Structure of replicating SARS-CoV-2 polymerase, 2020, bioRxiv,
http://dx.doi.org/10.1101/2020.04.17.047498.

[127] Z. Ruan, C. Liu, Y. Guo, Z. He, X. Huang, X. Jia, T. Yang, Potential inhibitors targeting RNA-dependent RNA polymerase activity (NSP12) of
SARS-CoV-2, 2020, Preprints 2020, 2020030024, http://dx.doi.org/10.20944/preprints202003.0024.v1.

[128] M.U. Mirza, M. Froeyen, Structural elucidation of SARS-CoV-2 vital proteins: Computational methods reveal potential drug candidates against
main protease, nsp12 polymerase and nsp13 helicase, J. Pharm. Biomed. Anal. (2020) http://dx.doi.org/10.1016/j.jpha.2020.04.008, in press.

[129] R. Arya, A. Das, V. Prashar, M. Kumar, Potential inhibitors against papain-like protease of novel coronavirus (SARS-CoV-2) from FDA approved
drugs, 2020.

[130] C. Wu, Y. Liu, Y. Yang, P. Zhang, W. Zhong, Y. Wang, Q. Wang, Y. Xu, M. Li, X. Li, et al., Analysis of therapeutic targets for SARS-CoV-2 and
discovery of potential drugs by computational methods, Acta Pharm. Sinica B 10 (5) (2020) 766–788.

[131] B.R. Beck, B. Shin, Y. Choi, S. Park, K. Kang, Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2)
through a drug-target interaction deep learning model, Comput. Struct. Biotechnol. J. 18 (2020) 784–790.

[132] A.P. Chiang, A.J. Butte, Systematic evaluation of drug–disease relationships to identify leads for novel drug uses, Clin. Pharmacol. Ther. 86 (5)
(2009) 507–510.

[133] M.J. Keiser, B.L. Roth, B.N. Armbruster, P. Ernsberger, J.J. Irwin, B.K. Shoichet, Relating protein pharmacology by ligand chemistry, Nature
Biotechnol. 25 (2) (2007) 197–206.

[134] S.B. Smith, W. Dampier, A. Tozeren, J.R. Brown, M. Magid-Slav, Identification of common biological pathways and drug targets across multiple
respiratory viruses based on human host gene expression analysis, PLoS One 7 (3) (2012) e33174.

[135] D.M. Gysi, Í.D. Valle, M. Zitnik, A. Ameli, X. Gan, O. Varol, H. Sanchez, R.M. Baron, D. Ghiassian, J. Loscalzo, et al., Network medicine framework
for identifying drug repurposing opportunities for covid-19, 2020, arXiv preprint arXiv:2004.07229.

[136] M. Zitnik, M. Agrawal, J. Leskovec, Modeling polypharmacy side effects with graph convolutional networks, Bioinformatics 34 (13) (2018)
i457–i466.

[137] Y. Zhou, Y. Hou, J. Shen, Y. Huang, W. Martin, F. Cheng, Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2, Cell
Discov. 6 (1) (2020) 1–18.

[138] A. Tahamtan, J. Charostad, S.J. Hoseini Shokouh, M. Barati, An overview of history, evolution, and manufacturing of various generations of
vaccines, J. Arch. Mil. Med. 5 (3) (2017) e12315.

[139] W.-H. Chen, U. Strych, P.J. Hotez, M.E. Bottazzi, The SARS-CoV-2 vaccine pipeline: an overview, Curr. Trop. Med. Rep. 7 (2) (2020) 61–64.
[140] J. Zhang, H. Zeng, J. Gu, H. Li, L. Zheng, Q. Zou, Progress and prospects on vaccine development against SARS-CoV-2, Vaccines 8 (2) (2020)

153.
[141] W. Shang, Y. Yang, Y. Rao, X. Rao, The outbreak of SARS-CoV-2 pneumonia calls for viral vaccines, NPJ Vaccines 5 (1) (2020) 1–3.
[142] F. Amanat, F. Krammer, SARS-CoV-2 vaccines: status report, Immunity 52 (4) (2020) 583–589.
[143] M. Ghaebi, A. Osali, H. Valizadeh, L. Roshangar, M. Ahmadi, Vaccine development and therapeutic design for 2019-nCoV/SARS-CoV-2: challenges

and chances, J. Cell. Physiol. (2020) http://dx.doi.org/10.1002/jcp.29771, in press.
[144] E. Prompetchara, C. Ketloy, T. Palaga, Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic,

Asian Pac. J. Allergy Immunol. 38 (1) (2020) 1–9.
[145] C. Palatnik-de Sousa, I. Soares, D. Rosa, Editorial: epitope discovery and synthetic vaccine design, Front. Immunol. 9 (2018) 826.
[146] E. Dorigatti, B. Schubert, Graph-theoretical formulation of the generalized epitope-based vaccine design problem, 2019, bioRxiv, http:

//dx.doi.org/10.1101/2020.04.17.047498.
[147] B.E. Correia, J.T. Bates, R.J. Loomis, G. Baneyx, C. Carrico, J.G. Jardine, P. Rupert, C. Correnti, O. Kalyuzhniy, V. Vittal, et al., Proof of principle

for epitope-focused vaccine design, Nature 507 (7491) (2014) 201–206.
[148] A. Patronov, I. Doytchinova, T-cell epitope vaccine design by immunoinformatics, Open Biol. 3 (1) (2013) 120139.
[149] A.C. Walls, Y.-J. Park, M.A. Tortorici, A. Wall, A.T. McGuire, D. Veesler, Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein,

Cell 181 (2) (2020) 281–292.e6.
[150] H. Sivaraman, S.Y. Er, Y.K. Choong, E. Gavor, J. Sivaraman, Structural basis of the SARS-CoV-2/SARS-CoV receptor binding and small-molecule

blockers as potential therapeutics, Annu. Rev. Pharmacol. Toxicol. 61 (2021) http://dx.doi.org/10.1146/annurev-pharmtox-061220-093932, in
press.

http://refhub.elsevier.com/S0370-1573(20)30254-4/sb113
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb113
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb113
http://dx.doi.org/10.1101/2020.04.17.047498
http://dx.doi.org/10.1101/2020.04.17.047498
http://dx.doi.org/10.1101/2020.04.17.047498
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb115
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb115
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb115
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb116
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb116
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb116
http://dx.doi.org/10.1080/07391102.2020.1753577
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb118
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb118
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb118
http://dx.doi.org/10.21203/rs.3.rs-16932/v1
http://dx.doi.org/10.1080/07391102.2020.1772885
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb121
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb121
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb121
https://covid-19.conacyt.mx/jspui/handle/1000/4059
http://dx.doi.org/10.21203/rs.3.rs-25856/v1
http://dx.doi.org/10.1101/2020.04.17.047498
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb125
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb125
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb125
http://dx.doi.org/10.1101/2020.04.17.047498
http://dx.doi.org/10.20944/preprints202003.0024.v1
http://dx.doi.org/10.1016/j.jpha.2020.04.008
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb129
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb129
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb129
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb130
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb130
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb130
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb131
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb131
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb131
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb132
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb132
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb132
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb133
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb133
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb133
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb134
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb134
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb134
http://arxiv.org/abs/2004.07229
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb136
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb136
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb136
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb137
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb137
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb137
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb138
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb138
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb138
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb139
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb140
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb140
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb140
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb141
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb142
http://dx.doi.org/10.1002/jcp.29771
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb144
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb144
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb144
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb145
http://dx.doi.org/10.1101/2020.04.17.047498
http://dx.doi.org/10.1101/2020.04.17.047498
http://dx.doi.org/10.1101/2020.04.17.047498
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb147
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb147
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb147
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb148
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb149
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb149
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb149
http://dx.doi.org/10.1146/annurev-pharmtox-061220-093932


E. Estrada / Physics Reports 869 (2020) 1–51 51
[151] T. Tang, M. Bidon, J.A. Jaimes, G.R. Whittaker, S. Daniel, Coronavirus membrane fusion mechanism offers as a potential target for antiviral
development, Antiviral Res. 178 (2020) 104792.

[152] Q. Wang, Y. Zhang, L. Wu, S. Niu, C. Song, Z. Zhang, G. Lu, C. Qiao, Y. Hu, K.-Y. Yuen, et al., Structural and functional basis of SARS-CoV-2
entry by using human ACE2, Cell 181 (4) (2020) 894–904.e9.

[153] M. Hoffmann, H. Kleine-Weber, S. Schroeder, N. Krüger, T. Herrler, S. Erichsen, T.S. Schiergens, G. Herrler, N.-H. Wu, A. Nitsche, et al.,
SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell 181 (2) (2020) 271–280.e8.

[154] R. Yan, Y. Zhang, Y. Li, L. Xia, Y. Guo, Q. Zhou, Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2, Science 367
(6485) (2020) 1444–1448.

[155] C.M. Poh, G. Carissimo, B. Wang, S.N. Amrun, C.Y.-P. Lee, R.S.-L. Chee, S.-W. Fong, N.K.-W. Yeo, W.-H. Lee, A. Torres-Ruesta, et al., Two linear
epitopes on the SARS-CoV-2 spike protein that elicit neutralising antibodies in COVID-19 patients, Nature Commun. 11 (1) (2020) 1–7.

[156] C.O. Barnes, A.P. West, K. Huey-Tubman, M.A. Hoffmann, N.G. Sharaf, P.R. Hoffman, N. Koranda, H.B. Gristick, C. Gaebler, F. Muecksch, et al.,
Structures of human antibodies bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of antibodies, Cell 182 (2020)
1–15.

[157] M. Yuan, N.C. Wu, X. Zhu, C.-C.D. Lee, R.T. So, H. Lv, C.K. Mok, I.A. Wilson, A highly conserved cryptic epitope in the receptor binding domains
of SARS-CoV-2 and SARS-CoV, Science 368 (6491) (2020) 630–633.

[158] L. Zhang, Multi-epitope vaccines: a promising strategy against tumors and viral infections, Cell. Mol. Immunol. 15 (2) (2018) 182–184.
[159] B. Robson, Computers and viral diseases. preliminary bioinformatics studies on the design of a synthetic vaccine and a preventative

peptidomimetic antagonist against the SARS-CoV-2 (2019-nCoV, COVID-19) coronavirus, Comput. Biol. Med. 119 (2020) 103670.
[160] D.W. Kulp, W.R. Schief, Advances in structure-based vaccine design, Curr. Opin. Virol. 3 (3) (2013) 322–331.
[161] G.A. Poland, R.B. Kennedy, B.A. McKinney, I.G. Ovsyannikova, N.D. Lambert, R.M. Jacobson, A.L. Oberg, Vaccinomics, adversomics, and the

immune response network theory: individualized vaccinology in the 21st century, in: Seminars in Immunology, Vol. 25, Elsevier, 2013,
pp. 89–103.

[162] L. He, J. Zhu, Computational tools for epitope vaccine design and evaluation, Curr. Opin. Virol. 11 (2015) 103–112.
[163] S. Khalili, A. Jahangiri, H. Borna, K. Ahmadi Zanoos, J. Amani, Computational vaccinology and epitope vaccine design by immunoinformatics,

Acta Microbiol. Immunol. Hungarica 61 (3) (2014) 285–307.
[164] P. Kalita, A. Padhi, K.Y. Zhang, T. Tripathi, Design of a peptide-based subunit vaccine against novel coronavirus SARS-CoV-2, Microb. Pathog.

145 (2020) 104236.
[165] S. Kang, M. Yang, Z. Hong, L. Zhang, Z. Huang, X. Chen, S. He, Z. Zhou, Z. Zhou, Q. Chen, et al., Crystal structure of SARS-CoV-2 nucleocapsid

protein RNA binding domain reveals potential unique drug targeting sites, Acta Pharm. Sinica B (2020) http://dx.doi.org/10.1016/j.apsb.2020.
04.009, in press.

[166] M.T. ul Qamar, A. Rehman, U.A. Ashfaq, M.Q. Awan, I. Fatima, F. Shahid, L.-L. Chen, Designing of a next generation multiepitope based vaccine
(MEV) against SARS-COV-2: Immunoinformatics and in silico approaches, 2020, BioRxiv, http://dx.doi.org/10.1101/2020.02.28.970343.

[167] M. Bhattacharya, A.R. Sharma, P. Patra, P. Ghosh, G. Sharma, B.C. Patra, S.-S. Lee, C. Chakraborty, Development of epitope-based peptide vaccine
against novel coronavirus 2019 (SARS-COV-2): Immunoinformatics approach, J. Med. Virol. 92 (6) (2020) 618–631.

[168] A. Grifoni, J. Sidney, Y. Zhang, R.H. Scheuermann, B. Peters, A. Sette, A sequence homology and bioinformatic approach can predict candidate
targets for immune responses to SARS-CoV-2, Cell Host Microbe 27 (64) (2020) 671–680.e2.

[169] M. Zheng, L. Song, Novel antibody epitopes dominate the antigenicity of spike glycoprotein in SARS-CoV-2 compared to SARS-CoV, Cell. Mol.
Immunol. 17 (5) (2020) 536–538.

[170] K.M. Campbell, G. Steiner, D.K. Wells, A. Ribas, A. Kalbasi, Prediction of SARS-CoV-2 epitopes across 9360 HLA class I alleles, 2020, BioRxiv,
http://dx.doi.org/10.1101/2020.03.30.016931.

[171] K. Kiyotani, Y. Toyoshima, K. Nemoto, Y. Nakamura, Bioinformatic prediction of potential T cell epitopes for SARS-CoV-2, J. Hum. Genet. 65
(7) (2020) 569–575.

[172] M. Prachar, S. Justesen, D.B. Steen-Jensen, S.P. Thorgrimsen, E. Jurgons, O. Winther, F.O. Bagger, Covid-19 vaccine candidates: Prediction and
validation of 174 SARS-CoV-2 epitopes, 2020, bioRxiv, http://dx.doi.org/10.1101/2020.04.17.047498.

[173] S.F. Ahmed, A.A. Quadeer, M.R. McKay, Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based
on SARS-CoV immunological studies, Viruses 12 (3) (2020) 254.

[174] S. Cornet, I. Miconnet, J. Menez, F. Lemonnier, K. Kosmatopoulos, Optimal organization of a polypeptide-based candidate cancer vaccine
composed of cryptic tumor peptides with enhanced immunogenicity, Vaccine 24 (12) (2006) 2102–2109.

[175] B. Schubert, O. Kohlbacher, Designing string-of-beads vaccines with optimal spacers, Genome Med. 8 (1) (2016) 9.
[176] N.C. Toussaint, Y. Maman, O. Kohlbacher, Y. Louzoun, Universal peptide vaccines–optimal peptide vaccine design based on viral sequence

conservation, Vaccine 29 (47) (2011) 8745–8753.
[177] J. Theiler, B. Korber, Graph-based optimization of epitope coverage for vaccine antigen design, Stat. Med. 37 (2) (2018) 181–194.
[178] E. Dorigatti, B. Schubert, Joint epitope selection and spacer design for string-of-beads vaccines, 2020, bioRxiv, http://dx.doi.org/10.1101/2020.

04.17.047498.
[179] T. Vider-Shalit, S. Raffaeli, Y. Louzoun, Virus-epitope vaccine design: informatic matching the HLA-I polymorphism to the virus genome, Mol.

Immunol. 44 (6) (2007) 1253–1261.
[180] L. Martínez, M. Milanič, I. Malaina, C. Álvarez, M.-B. Pérez, I. M. de la Fuente, Weighted lambda superstrings applied to vaccine design, PLoS

One 14 (2) (2019) e0211714.
[181] L. Martínez, M. Milanič, L. Legarreta, P. Medvedev, I. Malaina, M. Ildefonso, A combinatorial approach to the design of vaccines, J. Math. Biol.

70 (6) (2015) 1327–1358.
[182] S. Eubank, I. Eckstrand, B. Lewis, S. Venkatramanan, M. Marathe, C. Barrett, Commentary on Ferguson, et al., ‘‘Impact of non-pharmaceutical

interventions (NPIs) to reduce COVID-19 mortality and healthcare demand", Bull. Math. Biol. 82 (2020) 1–7.
[183] S. Flaxman, S. Mishra, A. Gandy, H.J.T. Unwin, T.A. Mellan, H. Coupland, C. Whittaker, H. Zhu, T. Berah, J.W. Eaton, et al., Estimating the effects

of non-pharmaceutical interventions on COVID-19 in Europe, Nature (2020) http://dx.doi.org/10.1038/s41586-020-2405-7, in press.

http://refhub.elsevier.com/S0370-1573(20)30254-4/sb151
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb151
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb151
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb152
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb152
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb152
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb153
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb153
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb153
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb154
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb154
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb154
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb155
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb155
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb155
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb156
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb156
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb156
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb156
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb156
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb157
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb157
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb157
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb158
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb159
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb159
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb159
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb160
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb161
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb161
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb161
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb161
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb161
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb162
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb163
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb163
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb163
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb164
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb164
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb164
http://dx.doi.org/10.1016/j.apsb.2020.04.009
http://dx.doi.org/10.1016/j.apsb.2020.04.009
http://dx.doi.org/10.1016/j.apsb.2020.04.009
http://dx.doi.org/10.1101/2020.02.28.970343
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb167
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb167
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb167
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb168
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb168
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb168
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb169
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb169
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb169
http://dx.doi.org/10.1101/2020.03.30.016931
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb171
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb171
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb171
http://dx.doi.org/10.1101/2020.04.17.047498
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb173
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb173
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb173
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb174
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb174
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb174
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb175
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb176
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb176
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb176
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb177
http://dx.doi.org/10.1101/2020.04.17.047498
http://dx.doi.org/10.1101/2020.04.17.047498
http://dx.doi.org/10.1101/2020.04.17.047498
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb179
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb179
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb179
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb180
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb180
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb180
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb181
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb181
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb181
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb182
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb182
http://refhub.elsevier.com/S0370-1573(20)30254-4/sb182
http://dx.doi.org/10.1038/s41586-020-2405-7

